

ชื่อโ*คร*งการวิจัย

น้ำลูกหนามแดงพร้อมดื่ม

Karanda Juice (Carissa carandas Linn.)

คณะผู้วิจัย

รุ่งทิวา

วงค์ไพศาลฤทธิ์

เบญจมาภรณ์

ภัทรนาวิก

ควงทิพย์

ศรีตาแสน

โครงการวิจัยทุนสนับสนุนงานวิจัยของมหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ งบประมาณผลประโยชน์ ปี พ.ศ. 2551 มหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ

ชื่อโครงการวิจัย

<mark>น้</mark>ำลูกหนามแดงพร้อมดื่ม

Karanda Juice (Carissa carandas Linn.)

คณะผู้วิจัย

รุ่งทิวา

วงค์ไพศาลฤทธิ์

เบญจมาภรณ์

ภัทรนาวิก

ดวงทิพย์

ศรีตาแสน

โครงการวิจัยทุนสนับสนุนงานวิจัยของมหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ งบประมาณผลประโยชน์ ปี พ.ศ. 2551 มหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ

ABSTRACT

This research aimed to studies quality of Num Daeng juice, effect of heating on the sensory quality, effect of storage time on the quality. Num Daeng juice was extracted from frozen Num Daeng fruit. The juice had pH 2.8±0.2, total soluble solid 8±0.4 Brix, total phenolic compounds 38.439±0.011 mg /100 ml juice, and no vitamin C was found in the juice. The optimum pasteurization 25% Num Daeng juice was 85°C for 1 min. The juice was stored in translucent glass bottles at 10°C for 7 weeks. During storage for 7 weeks phenolic compounds decreased continuously. This showed that the storage time affected the quantity of total phenolic compounds. The sensory evaluation showed that the preference in color, odor, flavor, clearness and over all ranged from 'like slightly' to 'like moderately' in every treatment (p≥0.05).

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการเปลี่ยนแปลงคุณภาพระหว่างการเก็บรักษาน้ำลูก หนามแดงพาสเจอร์ไรส์พร้อมดื่ม 25% และศึกษาผลของความร้อน ต่อการยอมรับทางด้าน ประสาทสัมผัสในลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม 25% ผลการทดลองพบว่า น้ำคั้นมี pH 2.8±0.2 ของแข็งที่ละลายได้ทั้งหมด 8±0.4 Brix สารประกอบฟืนอลิกทั้งหมด 38.439±0.011 mg/100 ml เมื่อนำน้ำคั้นที่ได้จากลูกหนามแดงมาผลิตเป็นน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% พบว่าอุณหภูมิและเวลาที่เหมาะสมในการฆ่าเชื้อน้ำลูกหนามแดงคือ 85 °C เวลา 1นาที หลังจาก บรรจุน้ำลูกหนามแดงที่ได้ ในขวดแก้วโปร่งแลงขนาด 150 ml ปิดด้วยจุกยางและฝาเกลียว อะลูมิเนียม เก็บรักษาไว้ที่อุณหภูมิ 10 °C เป็นเวลา 7 ลัปดาห์ และศึกษาการเปลี่ยนแปลง คุณภาพระหว่างการเก็บรักษา พบว่าระยะเวลาการเก็บรักษา ส่งผลให้ปริมาณสารประกอบฟืนอลิ กลดลง และผลของการให้ความร้อนแต่ละระดับ ได้แก่ อุณหภูมิ65, 70 และ 75 °C เวลา 15 นาที และ 80, 85 และ 90 °C เวลา 1 นาที ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p ≥ 0.05) และได้รับคะแนนความขอบคุณลักษณะด้านประสาทลัมผัสด้านสี กลิ่น รสชาติ ความใส และ ความขอบรวมอยู่ในช่วงชอบเล็กน้อยถึงชอบปานกลาง

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนทุนการวิจัยจากมหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ งบผลประโยชน์ปี 2551 ชอชอบคุณผกามาส มังคัลรังษี , สุชาดา คงความสุช และ กนกรัตน์ บุญเชิด ศึกษาสาชาอาหารและโภชนาการ - พัฒนาผลิตภัณฑ์ที่ให้ความช่วยเหลือจน งานวิจัยนี้สำเร็จลุล่วงไปด้วยดี

ผู้วิจัย 21 พฤษภาคม 2551

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	i
บทคัดย่อภาษาอังกฤษ	ü
กิตติกรรมประกาศ	iii
สารบัญ	iv
สารบัญตาราง	vi
สารบัญภาพ	vii
บทที่ 1 บทนำ	1
1.1 ความสำคัญของปัญหา	1
1.2 วัตถุประสงค์	1
1.3 ขอบเขตของการวิจัย	
1.4 ประโยชน์ที่คาดว่าจะได้รับ	2
บทที่ 2 เอกสารและงานที่เกี่ยวข้อง	3
2.1 หนามแดง	3
2.2 น้ำผลไม้	4
2.3 สารประกอบฟื้นอล	7
2.4 การพาสเจอร์ไรส์	16
บทที่ 3 อุปกรณ์แล <mark>ะวิธีการทดลอง</mark>	
3.1 วัตถุดิบ	
3.2 คงโกรก์	17
2.2 ຝຸກາງເພື່ອຳລຸກາຂານຄຸດຄຸງ	
3.3 สถานที่ทำการทดลอง	19
3.4 15thanasaga	20

สารบัญ (ต่อ)

and a second	หน้า
บทที่ 4 ผลและวิจารณ์ผลการทดอง	26
4.1 ผลการศึกษากรรมวิธีการผลิตลูกหนามแดงพร้อมดื่ม(มะม่วงหาวมะนาวโห่)	26
4.2 ผลการศึกษาผลของการให้ความร้อนต่อการยอมรับทางด้าน	
ประสาทสัมผัสในลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม	27
4.3 ผลการศึกษาการเปลี่ยนแปลงคุณภาพระหว่างการเก็บรักษา	
น้ำลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม	20
บทที่ 5 สรุปผลการทดลองและข้อเสนอแน <mark>ะ</mark>	23
บรรณาบกรม	37
บรรณานุกรม	38
ภาคมนวก	

สารบัญภาพ

ภาพที่		หน้า
2.1	นลหนามแดง	
3.1	กรรมวิธีการผลิตน้ำลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม	24
4.1	กราฟมาตรฐานการวิเคราะห์ปริมาณสารประกอบฟืนอลิกทั้งหมด	30
4.2	ปริมาณกรดฟืนอลิกทั้งหมดในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจ	
	ในขวดแก้วโปร่งแสงระหว่างการเก็บรักษาที่อุณหภูมิ 10 องศาเซลเซียล	30

สารบัญตาราง

ฅารางที่		หน้า
2.1 ปริ	มาณสารประกอบฟีนอลในอาหารและเครื่องดื่มชนิดต่าง ๆ ที่ได้จากพืช	8
2.2 ชนิ	ดและปริมาณสารประกอบฟืนอลในส่วนต่าง ๆของพืช	12
2.3 บท	เบาทของสารประกอบฟีนอลต่อการเกิดโรคมะเร็ง	15
4.1	คุณภาพข องน้ำคั้นที่ได้จากผลลู <mark>ก</mark> หนามแดง	26
4.2	แ สดงคะ แนนเฉลี่ยการทดสอบคุ <mark>ณ</mark> ลักษณะทางประสาทสัมผัส	
	ของน้ำลูกหนามแดงพาสเจอร์ไ <mark>รส์</mark> 25% ที่ผ่านการให้ความร้อน	
	ในอุณหภูมิและเวลาที่แตกต่า <mark>งกัน.</mark>	27
4.3	ปริมาณสารประกอบฟินอลิกทั้<mark>งหมด</mark> ในน้ำลูกหนามแดงพาสเจอร์ไรส์	
	25% ที่บรรจุในขวดแก้วโปร่ <mark>งแลงระห</mark> ว่างการเก็บรักษา	29
4.4	ปริมาณสีเพอริเมอริก <mark>ในน้ำลูกหนามแดง</mark> พาสเจอร์ไรส์ 25% ที่บรรจุ	
	ในขวดแก้วโปร่งแสงระ <mark>หว่า</mark> งกา <mark>รเก็บรักษา</mark>	31
4.5	ค่าสี L* ในน้ำลูกหน <mark>ามแดงพาสเจอ</mark> ร์ไร <mark>ส์</mark> 25% ที่บรรจุในขวดแก้ว	
	โปร่งแสงระห <mark>ว่างการเก็บ</mark> รักษ <mark>า</mark>	31
4.6	ค่าสี a* ใน <mark>น้ำลูกหนามแด</mark> งพาสเจอร์ไรส <mark>์ 25%</mark> ท <mark>ี่บรรจุใ</mark> นขวดแก้ว	
	โปร่งแสงร <mark>ะหว่างการเ</mark> ก็บรักษา	32
4.7	ค่าสี b* ใ <mark>นน้ำลูก<mark>หนา</mark>มแด<mark>งพาสเจอร์ไรส์</mark> 2<mark>5% ที่</mark>บรรจุใ<mark>น</mark>ขวดแก้ว</mark>	
	โปร่งแสงร <mark>ะหว่างการเก็บรักษา</mark>	32
4.8	ค่าสี ΔE^\star ในน้ำลูกหนา <mark>มแดงพาสเจอร์ไ</mark> รส์ 25% ที่บรรจุในขวดแก้ว	
	โปร่งแสงระหว่างการเก็บรักษา	33
4.9	ค่าสี C* ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้ว	
	โปร่งแสงระหว่างการเก็บรักษา	33
4.10	ค่าสี ∆ิ⊣ ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้ว	
	โปร่งแสงระหว่างการเก็บรักษา	34

บทที่ 1 บทนำ

1.1 ความสำคัญของปัญหา

ในปัจจุบันการดื่มเครื่องดื่มน้ำผลไม้ได้รับความนิยมแทนการดื่มเครื่องดื่มอัดลม เนื่องจาก น้ำผลไม้นั้นมีรสชาติอร่อย และมีคุณค่าทางโภชนาการซึ่งประโยชน์ต่อร่างกาย

การนำเอาลูกหนามแดงมาพัฒนาเป็นน้ำลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม เนื่องจาก ลูกหนามแดงเป็นผลที่ได้จากต้นหนามแดงที่เป็นไม้พุ่มโบราณ นิยมนำมาปลูกเป็นไม้ประดับ มีผล สีแดงเข้ม ในลูกหนามแดงนั้นมีสารต้านอนุมูลอิสระต่างๆ ได้แก่ แอนโทไซยานิน สารประกอบฟืนอลิก และวิตามินซี ซึ่ง มีส่วนช่วยในการลดความเสี่ยงต่อการเกิดโรคต่างๆ เช่น ลดการเป็นโรคหลอดเลือดหัวใจอุดตัน การเพิ่มประสิทธิภาพของสายตา และช่วยลดความเสี่ยง ของการเกิดโรคมะเร็ง (อนุพงศ์ ศิริเมืองมูล, 2548) แต่เป็นที่น่าเสียดายที่ผลลูกหนามแดงนั้นไม่ได้ นิยมนำมารับประทาน เนื่องจากลูกหนามแดงมีรสชาติเปรี้ยวและมีรสฝาด และแอนโทไซยานินซึ่ง เป็นสารสีนั้นมีความว่องไวต่อการเกิดปฏิกิริยาสูง (เสกสรร วงศ์ศิริ, 2546)

งานวิจัยนี้จึงมุ่งเน้นพัฒนาน้ำลูกหนามแดงมาแปรรูปเป็นน้ำผลไม้ที่บริโภคง่าย และ ทำการศึกษาผลของการให้ความร้อนซึ่งอาจมีผลต่อปริมาณแอนโทไซยานินที่มีอยู่ในน้ำลูกหนาม แดง เพื่อให้ได้น้ำลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่มที่มีลักษณะเป็นที่ยอมรับของผู้บริโภค เป็น การช่วยให้คนหันมาปลูกต้นหนามแดง เพื่อนำผลมาทำการแปรรูป และเป็นการอนุรักษ์พันธุ์ไม้ ชนิดนี้ไปในตัวอีกด้วย

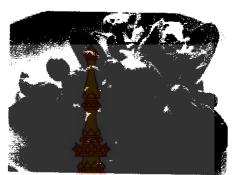
1.2 วัตถุประสงค์

- 1.2.1 ศึกษากรรมวิธีการผลิตลูกหนามแดงพร้อมดื่ม(มะม่วงหาวมะนาวโห่)
- 1.2.2 ศึกษาการยอมรับของผู้บริโภคที่มีต่อลูกหนามแดงพร้อมดื่ม(มะม่วงหาวมะนาวให่)

1.3 ขอบเขตของการวิจัย

การพัฒนาผลิตภัณฑ์น้ำลูกหนามแดง (มะม่วงหาวมะนาวโห่) โดยทำการ คัดเลือกลูกหนามแดง (มะม่วงหาวมะนาวโห่) ที่มีขนาดของผลและสีที่เท่ากัน แล้วนำมาทำศึกษา ปริมาณที่เหมาะสมของลูกหนามแดง : น้ำ ในการทำน้ำลูกหนามแดง แล้วทำการทดสอบชิมที่ ผู้บริโภคให้การยอมรับมากที่สุด โดยใช้ผู้ทดสอบชิมจำนวน 30 คน ให้คะแนนแบบ 9 Point Hedonic Scale วางแผนการทดสอบแบบ CRD วิเคราะห์ผลทางสถิติโดยใช้ตาราง ANOVA เปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี LSD (Least significant Different)

1.4 ประโยชน์ที่คาดว่าจะได้รับ


- 1.4.1 ได้ผลิตภัณฑ์น้ำลูกหนามแ<mark>ดง</mark>พร้อมดื่ม (มะม่วงหาวมะนาวโห่) ที่เป็นที่ยอมรับของ กลุ่มผู้บริโภค
- 1.4.2 เพื่อตอบสนองความต้อง<mark>การขอ</mark>งผู้บริโภคในปัจจุบันที่ชอบดื่มน้ำผลไม้
- 1.4.3 เป็นข้อมูลพื้นฐานในการผลิตผลิตภัณฑ์น้ำลูกหนามแดงพร้อมดื่ม (มะม่วงหาวมะนาวโห่) ในระดับอุตสาหกรรม

บทที่ 2 เอกสารและงานที่เกี่ยวข้อง

2.1 หนามแดง (Nam Daeng)

ชื่ออื่น : มะนาวไม่รู้ให่ (ภาคกลาง) หนามขึ้แฮด (ภาคเหนือ) มะนาวโห่ (ภาคใต้)

ภาพที่ 2.1 ผลหนามแดง

ลักษณะทางพฤกษศาสตร์

ลำต้น : เป็นไม้พุ่ม สูงประมาณ 2-3 เมตร เปลือกลำต้นสีน้ำตาลเข้ม แตกเป็นริ้ว ตาม กิ่งก้านและลำต้นเป็นหนามแหลม มียางสีขาว

ใบ : เป็นใบ<mark>เดี่ยว ออกตรงข้ามกัน ใบรูปรีเกือบก</mark>ลม ปลายใบเว้าเล็กน้อย โคนใบมน เว้าเข้าหาก้านใบ หลังใบ<mark>และท้องใบเรียบ ใ</mark>บอ่อนมีสีแดง ก้านใบสั้น

ดอก : ออกเป็น<mark>ช่อ</mark> ออกตามซอกใบใก<mark>ล้ป</mark>ลายยอดดอกย่อยสีขาว กลีบมี 5 กลีบ ปลายกลีบดอกแหลม โคนกลีบ<mark>ดอกเชื่อมติ</mark>ดกัน<mark>เป็นหลอด</mark> ก้านซูดอกสีเข้ม

ผล : รูปทร<mark>งกลมรี ผิวเรียบ ผลอ่อนสีขาว</mark> ผลแก่เป็นสีชมพูจนเป็นสีแดงเข้มจนเกือบ ดำ เมล็ดแบนมี 6 เมล็ด

ประโยชน์ : ใบ ใช้ใบสดต้มเอาน้ำดื่ม แก้ท้องร่วง แก้ปวดหู แก้เจ็บคอ แก้เจ็บ ปากแก้ไข้

> เนื้อไม้ เป็นยาบำรุงธาตุ บำรุงกระเพาะอาหารในร่างกายให้แข็งแรง แก้อ่อนเพลีย

> ผล ทั้งผลสุกและดิบกินแก้เลือดออกตามไรพัน เป็นยาฝาดสมาน รากสด ต้มเอาน้ำดื่ม เป็นยาขับพยาธิ บำรุงธาตุ เจริญอาหาร บำรุง กระเพาะอาหาร ตำให้ละเอียดผสมกับสุรา นำมาทาแล้วพอก แก้คัน ใช้พอกบาดแผล (นิจศิริ เรื่องรังสี, 2547)

2.2 น้ำผลไม้

2.2.1 ความหมาย

ตามประกาศของกระทรวงสาธารณสุข ฉบับที่ 62 (2524) ได้ให้คำจำกัดความ ของน้ำผักและน้ำผลไม้ว่าหมายถึงเครื่องดื่มที่ทำจากผลไม้หรือผักไม่ว่าจะมีคาร์บอนไดออกไซด์ หรือออกซิเจนอยู่ด้วยหรือไม่ก็ตามอาจมีเอทิลแอลกอฮอล์อันเกิดจากธรรมชาติขอส่วนประกอบ หรือที่เติมลงไป เพื่อช่วยให้กรรมวิธีการผลิตรวมกันได้ไม่เกินร้อยละ 0.5 โดยน้ำหนัก ซึ่งน้ำผักหรือ น้ำผลไม้เหล่านี้อาจอยู่ในรูปผลิตภัณฑ์พร้อมดื่มเข้มข้นหรือชนิดแห้งก็ได้

น้ำผลไม้ หมายถึง ของเหลวที่สกัดจากน้ำผลไม้ในส่วนที่บริโภคได้โดยวิธีบีบคั้น หรือกรรมวิธีเชิงกลอื่นๆ โดยทั่วไปน้ำผลไม้ที่ได้จะขุ่นตามลักษณะของเนื้อเยื่อผลไม้ นอกจากนี้ อาจมีส่วนที่เป็นน้ำมันหรือไขมัน เม็ดสี เนื้อ หรือเปลือกผลไม้ผสมอยู่ น้ำผลไม้บางชนิดต้องบริโภค เมื่อผ่านกระบวนการการทำให้ใสแล้ว

2.2.2 ประเภทของน้ำผลไม้

ในทางอุตสาหกรรมทางอาหารนั้น จะแบ่งชนิดของผลิตภัณฑ์น้ำผักน้ำผลไม้เป็น อีกหลายแบบทั้งนี้ขึ้นกับปริมาณของแข็งทั้งหมดบ้าง ปริมาณกรดบ้าง หรือ ความขุ่นใสของ ผลิตภัณฑ์บ้าง ชนิดของน้ำผักและผลไม้ที่สำคัญได้แก่ น้ำผลไม้แท้ น้ำผลไม้พร้อมดื่ม น้ำผลไม้ เข้มข้น และน้ำผลไม้ชนิดผง

น้ำผลไม้<mark>ที่มีวางขาบอยู่ตามท้องตลาดมีหลายประ</mark>เภทดังนี้

- 1. น้ำผ<mark>ลไ</mark>ม้แท้
- 2. น้ำ<mark>ผลไ</mark>ม้แท้ชนิดเข้มข้น
- 3. น้ำผล<mark>ไม้ดัดแป</mark>ลงเ<mark>นคตาร์ (N</mark>ectar)
- 4. น้ำผลไม้ดัดแปลงสควอช (Squash)
- น้ำผลไม้ในน้ำเชื่อม หรือไชรัปผลไม้
- 6. น้ำผลไม้คอร์เดียล หรือน้ำผลไม้ในน้ำเชื่อมแบบใส
- 7. น้ำผลไม้เทียม
- 8. น้ำผลไม้ชนิดเข้ม หรือน้ำหวานกลิ่นผลไม้เข้มข้น
- 9. เครื่องดื่มน้ำผลไม้ผง
- 10. เครื่องดื่มดัดแปลงผง
- 11. เครื่องดื่มผงอัดแก๊ส

2.2.3 วิธีการสกัดน้ำผลไม้แท้

สามารถทำได้ 2 วิธี คือ

- 2.2.3.1 การบีบอัด (Pressing) เป็นการสกัดน้ำผลไม้โดยใช้แรงอัด เพื่อบีบส่วน ที่เป็นของเหลวออกจากผักผลไม้ส่วนมากจะใช้ในกรณีที่ต้องการผลิตน้ำผลไม้ชนิดใส วิธีการสกัด เช่นนี้จะมีผลที่ดีตามมา คือ จะมีอัตราการละลายของออกซิเจนในน้ำผลไม้ที่สกัดได้ต่ำกว่าน้ำ ผลไม้ที่ได้จากการตีป่น
- 2.2.3.2 **การดีป่น** (Pulping) เป็นวิธีการสกัดโดยการดีปั่นให้เนื้อของผลไม้มี ขนาดเล็กลง มีสภาพเป็นของเหลวกึ่งของแข็ง นิยมใช้กับผลไม้ประเภท มะเชือเทศ เสาวรส มะละกอ ฝรั่ง เป็นต้น

2.2.3.3 ข้อควรระวังในระหว่างการสกัดน้ำผลไม้

ในระหว่างการสกัดน้ำผลไม้จะต้องมีการควบคุมปัจจัยต่างๆ อย่าง เหมาะสม มิฉะนั้นอาจทำให้ความขุ่นใส เนื้อสัมผัส และรสชาติของผลิตภัณฑ์น้ำผลไม้ที่ได้ เปลี่ยนแปลงไปจากที่ต้องการมาก ความขุ่นใส และเนื้อสัมผัสของน้ำผลไม้ อาจเนื่องมาจากการที่ ในผลไม้นั้นมีเอนไซม์ในกลุ่มเพกทิเนส ซึ่งเอนไซม์ดังกล่าวได้ทำปฏิกิริยาขึ้นเมื่อทำการสกัดน้ำ ผลไม้ โดยที่จะทำให้สารประกอบเพกทินที่มีในผลไม้มีขนาดโมเลกุลที่เล็กลง ทำให้ละลายน้ำได้ ง่ายยิ่งขึ้น และสามารถรวมตัวเป็นเจลได้เมื่อมีน้ำตาลและกรดอยู่ด้วย ดังนั้นในผลิตภัณฑ์ที่ ต้องการให้มีความขุ่นสูงและไม่ต้องการให้เปลี่ยนสภาพเป็นเจล หรือเป็นเมือกนั้น จำเป็นต้องระวัง ปฏิกิริยา ของเอนไซม์เพกทิเนสอย่างรวดเร็ว วิธีการที่นิยมใช้ในการหยุดการทำงานของเอนไซม์ ดังกล่าว คือ การใช้ความร้อน ซึ่งทำใด้โดยการเพิ่มอุณหภูมิของผัก (ไพบูลย์ ธรรมรัตน์วาสิก, 2529)

2.2.4 ส่วนประกอบของน้ำผลไม้

2.2.4.1 กรดชิตริกาคากลีเร

กรดที่เติมลงในผลิตภัณฑ์ นอกจากช่วยให้ผลิตภัณฑ์รสเปรี้ยวพอเหมาะ แล้ว ยังช่วยลดค่า pH ของผลิตภัณฑ์ ทำให้การเจริญเติบโตของเชื้อจุลินทรีย์ลดลง และถูกทำลาย ด้วยความร้อนได้ง่ายขึ้น และถ้าใช้น้ำตาลในผลิตภัณฑ์สูง การเติมกรด จะช่วยให้น้ำตาลทราย บางส่วนแตกตัวเป็นน้ำตาลโมเลกุลเดี่ยว จึงลดการตกผลึกของน้ำตาลในผลิตภัณฑ์ได้ กรดที่ใช้ใน การปรุงแต่งผลิตภัณฑ์น้ำผลไม้จะนิยมใช้กรดอินทรีย์ เช่น กรดมาลิก กรดชิตริก กรดทาร์ทาริก ซึ่ง นิยมใช้มากที่สุดคือ กรดชิตริก ดังนั้นการคำนวณปริมาณกรด หรือค่าความเป็นกรดของผลิตภัณฑ์ จึงนิยมคำนวณในรูปของกรดชิตริก

2.2.4.2 น้ำตาล

น้ำตาลเป็นคาร์โบไฮเดรตที่มีรสหวานละลายน้ำได้ดี น้ำตาลที่พบในน้ำ ผลไม้ส่วนมากเป็นกลูโคส ฟรักโทส และซูโครสเป็นต้น น้ำตาลนอกจากจะเป็นแหล่งพลังงานของ ยีสต์และจะถูกเปลี่ยนเป็นแอลกอฮอล์แล้วยังทำให้ไวน์มีรสหวาน ซูโครสหรือน้ำตาลทรายเป็น แหล่งของน้ำตาลที่ใช้เติมในน้ำผลไม้ที่มีน้ำตาลอยู่น้อย นอกจากนี้อาจจะใช้น้ำตาลจากแหล่งอื่น เช่น กลูโครสไซรัปและน้ำผึ้ง เป็นต้น น้ำผลไม้ที่มีรสหวานจะมีน้ำตาลอยู่มากจึงเหมาะต่อการผลิต ไวน์ เช่น องุ่นมีน้ำตาล 15.4% และน้ำผึ้งมีน้ำตาล 76.4% เป็นต้น ความเข้มข้นของน้ำตาลใช้ หน่วย °Brix และวัดโดยใช้เครื่อง hand refractometer น้ำตาลทรายซูโครสนิยมนำมาผลิตน้ำ ผลไม้เพราะหาง่ายและราคาถูก ส่วนในระดับอุตสาหกรรมจะใช้ ฟรักโทส คอร์นไซรัป หรือ กลูโคส ใช้ปแพราะสะดวก

ในการแปรรูปผลิตภัณฑ์น้ำผลไม้นั้นทางกระทรวงสาธารณสุขไม่อนุญาต ให้ใช้สารให้ความหวานอื่นใดนอกจากน้ำตาล ยกเว้น เครื่องดื่มที่มีวัตถุประสงค์พิเศษซึ่งต้องขอ อนุญาตเป็นกรณีไป น้ำตาลที่ใช้อาจได้แก่ น้ำตาลทราย แบะแซ กลูโคส ฟรักโทส ก็ได้แต่โดยทั่วไป แล้ว นิยมใช้น้ำตาลทรายเป็นส่วนผสม น้ำตาลทรายที่ใช้ควรเป็นน้ำตาลทรายขาวที่ผ่านการฟอกสี มาแล้ว เพื่อป้องกันการเกิดสีคล้ำของผลิตภัณฑ์ ตลอดจนการมีกลิ่นแปลกปลอมอันเนื่องมาจาก กากน้ำตาล ที่มีอยู่ในน้ำตาลที่ไม่ได้ฟอกสี

2.2.4.3 น้ำ

ความจำเป็นต่อการเจริญของสิ่งมีชีวิตทุกชนิดแม้แต่จุลินทรีย์ก็ต้องการ น้ำ นอกจากนี้น้ำยังมีผลต่อคุณภาพของน้ำผลไม้อีกด้วย ดังนั้นน้ำที่ใช้เป็นส่วนผสมกับน้ำผลไม้ใน การผลิตน้ำผลไม้จึงต้องเป็นน้ำสะอาดไม่มีคลอรีน มีค่า pH 7.0-7.2 ค่าของแข็งทั้งหมดต้องต่ำ ปราศจากจุลินทรีย์และไม่มีไอออนของโลหะ โดยเฉพาะอย่างยิ่งน้ำที่ใช้ผลิตน้ำผลไม้ต้องไม่มี ไอออนของเหล็กหรือทองแดงปนอยู่ เพราะจะทำให้สีแดงของน้ำผลไม้เปลี่ยนไปได้

2.3 สารประกอบฟืนอล (phenolic compounds)

สารประกอบฟินอลสามารถถูกพบได้ในอาหารและเครื่องดื่มที่ได้มาจากพืช เช่น ผัก ผลไม้ ธัญชาติต่างๆ น้ำผลไม้ ไวน์ เบียร์ ชา และกาแฟ เป็นต้น แต่จะพบในปริมาณที่แตกต่าง กันออกไปในพืชต่างชนิดกันหรือแม้แต่ในพืชชนิดเดียวกันแต่มาจากสถานที่ผลิตที่แตกต่างกัน เนื่องจากการสร้างสารประกอบฟินอลของพืชจะมีทั้งปัจจัยทางด้านพันธุกรรมและสิ่งแวดล้อมเข้า มาเกี่ยวข้อง นอกจากนี้ยังพบว่า วิธีการเพาะปลูก ระดับความสุก กระบวนการแปรรูป หรือแม้แต่ วิธีการเก็บรักษาก็ล้วนมีผลต่อปริมาณสารประกอบฟินอลทั้งสิ้น

สารประกอบฟื้นอลมีบทบาททั้งต่อคุณภาพทางประสาทลัมผัสและคุณค่าทาง
โภชนาการของอาหารจากฟืช เนื่องจากเป็นสารประกอบที่มีรสฝาดและขม และมีความเกี่ยวข้อง
โดยตรงกับการเกิดปฏิกิริยาออกซิเดชันในระหว่างกระบวนการแปรรูปและการเก็บรักษาโดยจะทำ
ให้อาหารเกิดสีน้ำตาล เกิดการพัฒนากลื่นและมีการสูญเสียสารอาหารบางชนิดได้ ซึ่งลักษณะ ดังกล่าวนี้อาจเป็นสิ่งที่ต้องการในบางกรณี เช่นการผลิตชาดำหรือโกโก้ แต่อาจเป็นลักษณะที่ไม่ ต้องการในบางกรณี เช่น การแปรรูปผักผลไม้ เป็นต้น

การรายงานปริมาณของสารประกอบฟืนอลในอาหารและเครื่องดื่มมีอยู่มากมาย แต่ไม่สามารถที่จะนำข้อมูลดังกล่าวมาเปรียบเทียบกันได้ เนื่องจากวิธีการที่ใช้ในการวิเคราะห์ และความแตกต่างของสารประกอบฟืนอลในอาหารซึ่งมีความหลากหลายและแตกต่างกันออกไป ตามปัจจัยต่างๆ ดังที่ได้กล่าวมาแล้ว อีกทั้งยังมีสารประกอบฟืนอลอีกมากที่ยังไม่ถูกบ่งซื้อย่าง ขัดเจน ดังนั้นจึงอาจกล่าวได้ว่าข้อมูลเกี่ยวกับปริมาณสารประกอบฟืนอลในอาหารยังไม่มีความ สมบูรณ์เพียงพอและในบางครั้งยังสามารถพบว่า มีความขัดแย้งกันเองเกิดขึ้นได้อีกด้วยอย่างไรก็ ตามในที่นี้จะขอแสดงตัวอย่างของผลการวิเคราะห์ปริมาณสารประกอบฟืนอลในอาหารและ เครื่องดื่มชนิดต่างๆที่ได้มาจากพืชไว้ใน ตารางที่ 2.1

ตารางที่ 2.1 ปริมาณสารประกอบฟืนอลในอาหารและเครื่องดื่มชนิดต่างๆ ที่ได้จากพืช

Food/ Beverage	Total Polyphenois	Food/ Beverage	Total Polyphenois
Cereals (mg/100 g dm)	<u> </u>	Fruits (mg 100g fm)	
Вапеу	1200-1500	Blackcurrant	140-1200
Corn	30.9	Blueberry	135-280
Millet	590-1060	Cherry	60-90
Oats	8.7	Cowberry	128
Rice	8.6	Cranberry	77-247
Sorghum	170-10}260	Gooseberry	22-75
Wheat	22-40	Grape	50-490
		Grapefruit	50
Legumes (mg/100 g dm)		Orange	50-100
Black gram	540-1200	Peach	10-150
Chickpeas	78-230	Pear	2-25
Cowpeas	175-590	Plum	4-225
Common beans	34-280	Raspberry	37-429
Green gram	440-800	Red currant	17-20
Pigeon peas	380-1710	Strawberry	38-218
	1 1 3	Tomato	85-130
Nut (% dm)			03-130
Betel nuts	26-33	Fruit juices (mg/L)	
Cashew nuts	33.7	Apple juice	2-16
Peanuts	0.04	Orange juice	370-7100
Pecan nuts	8-14		660-1000
	8-14		000-1000
egetables (mg 100g fm)	3 7	Beverages	
Brussels sprouts	6-15	Tea leaves (% dm)	20-35
Cabbage	25	Green	22-33
Leek	20-40 4128	Black	
Onion	100-2025	Tea cup (mg/200 mL)	150-210
Parsley	55-180	Coffee beans (% dm)	0.2-10
Celery	94	Coffee cup (mg/150 mL)	200-550
		Cacao beans (% dm)	12-18
ruits (mg 100g fm)		Wine (mg/L)	200.000
Apple	27-298	White	200-300
Apricot	30-43	Red	1000-4000 (6500)
		Beer (mg/L)	60-100

ที่มา : Bravo (1998) อ้างโดยวิวัฒน์ (2545)

2.3.1 เมตาบอลิซึมของสารประกอบฟืนอล

มีผลงานวิจัยหลายชิ้นยืนยันอย่างแน่ชัดว่า สารประกอบฟืนอลที่ละลายได้จะ สามารถถูกเมตาบอไลซ์ได้ในระบบทางเดินอาหารของมนุษย์ โดยสารประกอบฟืนอลอย่างง่ายที่ อยู่ในรูปอิสระ (เช่น กรดชินนามิก(cinnamic acid) กรดคูมาริก(p-coumaric acid), กรดเฟอรูลิก (ferulic acid), กรดคาเฟอิก(caffeic acid) และอื่นๆ) และ อะกลัยโคน(aglycones) จะสามารถถูกดูดซึมได้โดยตรงที่บริเวณผนังลำใส้เล็ก ในขณะที่ไกลโคไซด์จะต้องถูกย่อยออกเป็น อะกลัย โคนและน้ำตาลก่อนจึงจะสามารถถูกดูดซึมได้ แต่เนื่องจากในระบบทางเดินอาหารของมนุษย์ไม่มี เอนไซม์เบตา-ไกลโคซิเดส (β -ycosidases) เหมาะสมจึงมักไม่มีการดูดซึมที่บริเวณลำใส้เล็ก ไกลโคไซด์จึงต้องผ่านมาที่บริเวณลำไส้ใหญ่ ซึ่งมีจุลินทรีย์ต่างๆ ช่วยย่อยสลายในอยู่ในรูปของ อะกลัยโคน ก่อนจึงจะมีการดูดซึมที่บริเวณส่วนปลายของลำไส้ใหญ่(colon)ได้ แต่อย่างไรก็ตามมี รายงานว่าจุลินทรีย์ในลำไส้ใหญ่ไม่สามารถที่จะย่อยสารประกอบฟืนอลได้ทุกซนิดและตัวอย่าง ของสารประกอบฟืนอลที่จุลินทรีย์ไม่สามารถย่อยได้ คือ insoluble condensed tannins ซึ่ง สารประกอบฟินอลที่จุลินทรีย์ไม่สามาหร้อมกับอุจจาระทั้งหมด

2.3.2 อิทธิพลของสารประกอบฟื้นอลต่อการใช้ประโยชน์สารอาหารของร่างกาย

คุณสมบัติที่เป็นที่ทราบกันดีของสารประกอบฟินอลประการหนึ่ง คือ ความสามารถในการรวมตัว และตกตะกอนโปรตีน ซึ่งความสามารถในการรวมตัวกับโปรตีนนั้น เป็นสมบัติของสารประกอบฟินอลทั่วไป และไม่ก่อให้เกิดปัญหาใดๆ ต่อการย่อยโปรตีนของ ร่างกายมนุษย์ แต่สารประกอบฟินอลที่มีขนาดโมเลกุลใหญ่ คือ ประกอบด้วยฟลาโวนอลอย่าง น้อย 3 หน่วยขึ้นไปจะสามารถตกตะกอนโปรตีนได้ ทำให้โปรตีนที่ร่างกายได้รับจากอาหารอยู่ใน ภาพที่ไม่ละลาย การย่อยสลายโปรตีนจึงไม่สามารถเกิดขึ้นได้และสารประกอบฟินอลโมเลกุล ใหญ่เหล่านี้ยังสามารถรวมตัวกับเอ็นไซม์ต่างๆ ทำให้เอนไซม์สามารถทำงานได้น้อยลง ซึ่งจะมี ผลกระทบต่อการย่อยสลายโปรตีน คาร์โบไฮเดรตและไขมัน นอกจากนี้ยังพบว่าสารประกอบฟินอลโมเลกุล ใหญ่เลกุลใหญ่นี้ยังสามารถรวมตัวกับโพลีแซคคาไรด์เป็นสารประกอบเชิงซ้อนซึ่งจะมีผลทำให้ ร่างกายสามารถนำคาร์โบไฮเดรตไปใช้ประโยชน์ได้น้อยลง

ส่วนผลกระทบของสารประกอบฟืนอลต่อเมตาบอลิขึ้มของไขมันนั้นดูจะเป็น
ประโยชน์ต่อร่างกายมากที่สุด เนื่องจากพบว่าสารประกอบฟืนอลมีผลทำให้มีการขับไขมันออกมา
พร้อมกับอุจจาระในปริมาณมากขึ้น และมีการศึกษาถึงบทบาทในการลดระดับโคเลสเตอรอลใน
เลือดของสัตว์ทดลองที่ถูกเลี้ยงด้วยอาหารที่มี tannin tannin acid และ tea catechin ซึ่งผลการ
ทดลองพบว่าสามารถเพิ่มปริมาณ high-density lipoprotein (HDL) cholesterol ซึ่งเป็น
โคเลสเตอรอลชนิดดี และลดปริมาณ low-density lipoprotein (LDL) cholesterol ซึ่งเป็น
โคเลสเตอรอลชนิดเลวลงได้ สาเหตุที่เป็นเช่นนี้น่าจะมีผลมาจากการลดการดูดซึมโคเลสเตอรอล
และเพิ่มการขับกรดน้ำดีออกจากร่างกาย
ทำให้ร่างกายจำเป็นต้องใช้โคเลสเตอรอลที่มีอยู่ในการ
สร้างกรดน้ำดีมากขึ้น

ในกรณีของเกลือแร่ มีรายงานว่าสารประกอบฟืนอลสามารถรวมตัวกับโลหะ ประจุบวกเกิดเป็นสารประกอบเชิงซ้อนได้โดยเฉพาะอย่างยิ่งในกรณีของธาตุเหล็กซึ่งเป็นผลมา จาก galloyi group และ catechol groups ในโมเลกุลของสารประกอบฟืนอล จึงพบว่า สารประกอบฟืนอลในซาเซียว ซาสมุนไพร ซาดำ กาแพ่ โกโก้ และไวน์ ล้วนมีผลในการลดการ ดูดซึมธาตุเหล็กของร่างกายทั้งสิ้น แต่อย่างไรก็ตาม มีรายงานว่าสารประกอบฟืนอลจากถั่ว เหลือง ถั่วเขียว และถั่วแดงไม่มีผลต่อการดูดซึมธาตุเหล็กของร่างกาย ส่วนเกลือแร่ชนิดอื่นที่มี รายงานว่าสารประกอบฟืนอลมีบทบาทต่อการลดการดูดซึมได้แก่ ทองแดง สังกะสี โซเดียมและ อะลูมิเนียมในขณะที่มีรายงานว่าสารประกอบฟืนอลไม่มีผลต่อการดูดซึมแมกนีเซียม แคลเซียม และแมงกานีส

2.3.3 คุณสมบัติการเป็<mark>นสารต้า</mark>นอ<mark>อกซิเดชัน</mark>ของสารประกอบฟืนอล

คุณสมบัติที่ได้รับความสนใจอย่างมากในปัจจุบันของสารประกอบฟืนอล คือ การ เป็นสารต้านออกซิเดชันและสารต้านการกลายพันธุ์ (antimutagents) ซึ่งเกิดจากอนุมูลอิสระ (free radicals) และการใช้สารประกอบฟืนอลในการป้องกันโรคต่างๆโดยเฉพาะโรคหัวใจขาด เลือดและมะเร็ง โดยสารประกอบฟืนอลจะทำหน้าที่กำจัดอนุมูลอิสระและไอออนของโลหะที่ สามารถเร่งการเกิดปฏิกิริยาออกซิเดชันของไขมันและโมเลกุลอื่นๆ ด้วย การให้อะตอมไฮโดรเจน แก่อนุมูลอิสระอย่างรวดเร็ว ดังปฏิกิริยาต่อไปนี้

$$ROO \bullet + PPH \longrightarrow ROOH + PP \bullet$$
 $ROO + PPH \longrightarrow ROH + PP \bullet$

เมื่อสารประกอบพื้นอลให้อะตอมไฮโดรเจนแก่อนุมูลอิสระไปแล้ว อนุมูลอิสระ ของสารประกอบพื้นอลจะค่อนข้างมีเสถียรภาพ ดังนั้นจึงไม่ทำปฏิกิริยากับโมเลกุลอื่นต่อไปยิ่งไป กว่านั้นอนุมูลอิสระของสารประกอบพื้นอลบางขนิดยังคงสามารถรวมตัวกับอนุมูลอิสระอื่นได้อีก ด้วย จึงทำให้สารประกอบพื้นอลเหล่านั้นสามารถลดจำนวนอนุมูลอิสระลงได้ถึง2 เท่า ดัง ปฏิกิริยาต่อไปนี้

$$ROO \bullet + PP \bullet \longrightarrow ROOPP$$
 $RO \bullet + PP \bullet \longrightarrow ROPP$

แต่ความสามารถในการเป็นสารด้านออกซิเดชันของสารประกอบฟืนอลยังขึ้นอยู่
กับระบบด้วยดังนั้นการศึกษาหรือเปรียบเทียบคุณสมบัติดังกล่าวจึงจำเป็นต้องระบุรายละเอียด
ของระบบให้ชัดเจนโดยเฉพาะอย่างยิ่งสับสเตรทที่เป็นเป้าหมายของระบบ นอกจากนี้ยังพบว่าใน
ภาวะที่มีสารประกอบฟืนอลความเข้มข้นสูง พีเอชสูงและมีเหล็กอยู่ด้วยนั้นสารประกอบฟืนอล
อาจจะเป็นตัวเริ่มต้นของกระบวนการออกซิเดชันเสียเองได้ (Bravo(1998) อ้างโดยวิวัฒน์, 2545)

สารประกอบฟืนอลที่ถูกพบว่ามีคุณสมบัติเป็นสารต้านออกชิเคชันนั้นสามารถพบ ได้ในส่วนต่างๆ ของพืช เช่น เมล็ด (ได้แก่ ถั่วเหลือง ถั่วสิสง เมล็ดฝ้าย มัสตาร์ด ข้าว และงา) ผล (ได้แก่ องุ่น ส้ม พริกไทยดำ และโอลีฟ) ใบ (ได้แก่ ชา และเครื่องเทศต่างๆ) และส่วนอื่นๆ (ได้แก่ มันเทศ และหัวหอม) และหนึ่งในสารประกอบฟืนอลซึ่งมีคุณสมบัติเป็นสารต้าน ออกซิเดชันที่เป็นที่รู้จักกันคือยู่แล้ว คือ วิตามินอี ส่วนสารประกอบฟืนอลอื่นๆ ที่กำลังได้รับความ สนใจอย่างมาก คือเฟลโวนอยด์(flavonoids) (ได้แก่ ฟลาโวน(flavones), ฟลาโวนอล(flavonois), ไอโซฟลาโวน(isoflavones), แคทิชิน(catechins), ฟลาโวโนน(flavonones) และ คาลโคน (chalcones)) และอนุพันธุ์ของกรดซินนามิก (cinnamic acid derivatives) (ได้แก่กรดคาเฟอิก (caffeic acid), กรดเฟอรูลิก(ferulic acid), กรดคาโรจินิก(chalorgenic acid) และอื่นๆ) โดยจะ สามารถพบทั้งเฟลโวนอยด์และอนุพันธุ์กรดซินนามิกได้ในเกือบทุกส่วนของพืช แต่จะมีความ แตกต่างกันออกไปในด้านของชนิดและปริมาณ ซึ่งอาจสรุปเป็นแนวโน้มได้ดังตารางที่ 2.2 (Pratt (1992) อ้างโดยวิวัฒน์, 2545)

ตารางที่ 2.2 ชนิดและปริมาณของสารประกอบฟืนอลในส่วนต่างๆ ของพืช

ส่วนของพืช	ชนิดและปริมาณของสารประกอบฟื้นอล		
ผล	Cinnamic acids > catechins ≈ leucoanthocyanins (flavan3,4-diols) >		
ໃນ	flavonols		
เนื้อไม้ เปลือกไม้	Flavonols ≈ cinnamic acids > catechins ≈ leucoanthocyanins		
	Catechins ≈ leucoanthocyanins > flavonols > cinnamic acids เหมือนในเนื้อไม้แต่จะปริมาณสูงกว่า		

ที่มา : Pratt (1992) อ้างโดย วิวัฒน์ (2545)

จากผลการทดลองมากมาย พบว่า ทั้งเฟลโวนอยด์และอนุพันธุ์กรดชินนามิกมีสมบัติ เป็นสารต้านออกซิเดชันที่ดีมากในอาหารที่เป็นไขมันและไขมันผสมกับน้ำและปัจจัยที่ส่งเสริม คุณสมบัติดังกล่าว คือ ตำแหน่งและจำนวนของหมู่โฮดรอกชิลและโครงสร้างอื่นๆ ของโมเลกุล ตัวอย่างเช่น หมู่โฮดรอกชิลของวงแหวน B ซึ่งถือเป็นปัจจัยหลักที่ใช้ในการพิจารณาความสามารถ ในการเป็นสารต้านออกซิเดชัน ในกรณีของเฟลโวนอยด์นั้นพบว่าหมู่โฮดรอกชิลที่ตำแหน่ง para (C4') จะมีผลให้มีสมบัติเป็นสารต้านออกชิลที่ตำแหน่งเมากกว่าหมู่โฮดรอกชิลที่ตำแหน่งออร์โธ(ortho) (C2' และ C6') ในขณะที่หมู่โฮดรอกชิลที่ตำแหน่งเมทา(meta)จะไม่มีผลต่อสมบัติดังกล่าว นอกจากนี้หมู่โฮดรอกชิลที่ C3 (วงแหวน A) และ 4-keto group (C=O ที่คาร์บอนตัวที่ 4 ของวง แหวน C) และ/หรือหมู่โฮดรอกชิลที่ C5 (วงแหวน A) และ 4-keto group ในโมเลกุลของ flavonoids จะเป็นกลุ่มที่ไวต่อการทำปฏิกิริยากับโลหะซึ่งเป็นการช่วยลดการเกิดออกชิเดชันได้ อีกทางหนึ่ง ส่วนหมู่โฮดรอกชิล ของวงแหวน A ที่ตำแหน่งเมทา (C5 และ C7) และหมู่โฮดรอกชิลที่ตำแหน่ง C3 และพันธะคู่ระหว่าง C2 และ C3 ในวงแหวน C อาจมีผลเล็กน้อยต่อ คุณสมบัติการเป็นสารตำนออกชิเดชันฟลโวนอยด์

จากการเปรียบเทียบคุณสมบัติในการเป็นสารด้านออกซิเดชันของสารประกอบ พื้นอลบริสุทธิ์ พบว่า catechin > myricetin = epicatechin = rutin > gallic acid > quercetin > cyaniding (Frankle (1999) อ้างโดย วิวัฒน์, 2545)

2.3.4 ความคงตัวของสารประกอบฟืนอลในการเป็นสารต้านออกซิเดชัน

ความคงตัวของสารประกอบฟืนอลในการเป็นสารต้านออกซิเดชันจะขึ้นอยู่กับ ปัจจัยที่มีผลต่อการเปลี่ยนแปลงโครงสร้างของโมเลกุลสารประกอบฟืนอล ดังตัวอย่างต่อไปนี้ คือ

- 1. ค่าความเป็นกรดด่าง (pH)
- 2. อุณหภูมิ
- 3. แลง
- 4. เอนไซม์
- การรวมตัวกับโมเลกุลอื่นๆ

เนื่องจากOH-groupในแต่ละตำแหน่งของสารประกอบฟืนอลมีบทบาทต่อ คุณสมบัติของการเป็นสารต้านออกซิเดชันดังนั้นการเปลี่ยนแปลงค่าความเป็นกรดด่างซึ่งจะมีผล ให้ OH-group เกิดการเปลี่ยนแปลงจึงน่าจะมีผลต่อสมบัติของการเป็นสารต้านออกซิเดชันของ สารประกอบฟืนอลด้วยเช่นกัน (Jackman and Smith(1996) อ้างโดยวิวัฒน์, 2545)

อุณหภูมิสูงในระหว่างการแปรรูปจะมีผลทำให้สารประกอบพีนอลโมเลกุลเล็กๆ ระเหยกลายเป็นไอไปได้ ในขณะเฟลโวนอยด์ ซึ่งเป็นสารประกอบพีนอลที่มีโครงสร้างแบบ C6-C3-C6 โดยมีลักษณะเป็นวงแหวน 3 วงต่อกันจะเกิดการแตกของวงแหวน C และสลายตัว ต่อไปโดยวงแหวน B จะเปลี่ยนเป็นกรดคาร์บอกซิลิกและวงแหวน A จะเปลี่ยนเป็นคาร์บอกซีอัลดี ไฮด์ตามลำดับ (Jackman and Smith (1996) อ้างโดยวิวัฒน์,2545) และระเหยไปพร้อมกับไอน้ำ (Kim and Smith(1992) อ้างโดยวิวัฒน์,2545)

แสงแดดเป็นอีกปัจจัยหนึ่งที่เร่งการสลายตัวหรือการเปลี่ยนแปลงโครงสร้างของ สารประกอบฟืนอล เช่น OH-group ที่คาร์บอนตำแหน่งที่ 5 ในโมเลกุลของแอนโทไซยานินจะ สามารถเรื่องแลง และไวต่อการสลายตัวเมื่อโดนแสงแดด นอกจากนี้แสงแดดยังเป็นปัจจัยเร่งให้ เกิดการสลายตัวเนื่องจากความร้อนให้เกิดเร็วขึ้นด้วย (Jackman and Smith (1996) อ้างโดย วิวัฒน์,2545)

ในสภาพที่มีเอนไซม์ polyphenoloxidase อยู่ด้วยจะเป็นการเร่งการ เปลี่ยนแปลงของสารประกอบพื้นอลบางชนิดให้เกิดได้เร็วขึ้นแต่อัตราเร่งปฏิกิริยาจะแตกต่างกัน ออกไปเช่น Fu และคณะ (1992) อ้างโดยวิวัฒน์, 2545) พบว่า polyphenoloxidase สามารถ เร่งการเกิดปฏิกิริยาออกซิเดชันของ(-)เอพิแคทิซิน ((-)-epicatechin) ได้ดีกว่า (+) แคทิซิน ((+)-catechin)

สารประกอบฟืนอลสามารถเกิดการรวมตัวกับโมเลกุลอื่นๆ เช่น โปรตีน โพลีแซค-คาไรด์ อัลคาลอยด์และแอนโทไซยานินได้ง่ายและปฏิกิริยาอาจจะเป็นแบบสามารถผันกลับได้หรือ ไม่ได้นั้นขึ้นอยู่กับปัจจัยต่างๆ ในขณะที่เกิดปฏิกิริยา เช่น ออกซิเจน ไอออนโลหะ เอ็นไซม์ และ กรด เป็นต้น ซึ่งจะเป็นตัวการทำให้เกิดการเปลี่ยนแปลงสมดุลของปฏิกิริยา เช่น ทำให้ สารประกอบในภาวะสมดุลรวมตัวกันและตกตะกอนแยกออกมา หรือเกิดพันธะโควาเลนท์รวมกัน เป็นสารใหม่ ทำให้ปฏิกิริยาไม่สามารถผันกลับได้ (Haslam et al. ,1992 อ้างโดยวิวัฒน์ ,2545) หากปรากฏการณ์เหล่านี้มีผลทำให้สารประกอบฟืนอลมีการเปลี่ยนแปลงของโครงสร้างไปจะทำให้ สารประกอบฟืนอลสูญเสียสมบัติในการเป็นสารต้านออกซิเดชันไปได้

2.3.5 บทบาทของสารประกอบ<mark>ฟ</mark>ื่นอลกับการป้องกันโรคมะเร็ง

โรคมะเร็งสามารถเกิดขึ้นได้จากการที่ร่างกายได้รับสารเคมี รังสี หรือไวรัสจาก สิ่งแวดล้อม สิ่งแปลกปลอมเหล่านี้จะทำให้เกิดการเปลี่ยนแปลงในระดับของดีเอ็นเอ ส่งผลให้ เกิดความผิดปกติของเซลล์และเนื้อเยื่อขึ้นตามลำดับ และมีรายงานว่า สารประกอบฟืนอลบาง ชนิดมี บทบาททั้งในด้านส่งเสริมและป้องกันมะเร็งได้ดังตัวอย่างในตารางที่ 2.3 โดยกลุ่มที่มี บทบาททั้ง 2 ด้านดังกล่าวนี้ คือสารในกลุ่มของฟืนอลและแคททิคอล (catechol) เนื่องจากใน สภาพปกติสารดังกล่าวจะเข้าทำปฏิกิริยากับในไตรท์ ทำให้ในไตรท์หมดสภาพในการเป็นสารก่อ มะเร็ง และส่วนที่เหลือจะถูกเปลี่ยนเป็นควิโนน(quinones) ซึ่งสามารถถูกกำจัดออกจากร่างกาย ได้ด้วยเอ็นไซม์กลูตาไธโอน ทรานส์เฟอเรส (glutathione transferase) ในกระบวนการทางกำจัด สารเคมีแปลกปลอมที่เข้ามาในร่างกาย (xenobiotic metabolism) แต่หากร่างกายได้รับฟืนอล และแคททิคอล ในปริมาณสูงมากจนระบบดังกล่าวไม่สามารถกำจัดได้หมด ควินิน(quinines) จะเข้าทำปฏิกิริยากับโปรตีนและก่อให้เกิดอนุมูลอิสระต่างๆ ซึ่งเท่ากับมีผลในการส่งเสริมให้เกิด โรคมะเร็งขึ้นได้ในขณะที่สารในกลุ่มฟืนอลิค จะมีแต่บทบาทในด้านที่เป็นประโยชน์เท่านั้น คือ จะทำหน้าที่ในการกำจัดอนุมูลอิสระ ในไตรท์ และโลหะ นอกจากนี้ยังมีบทบาทในการต่อต้านไวรัส และช่วยส่งเสริมระบบเอ็นไซม์ต่างๆ ในกระบวนการทางกำจัดสารเคมีแปลกปลอมด้วย

ตารางที่ 2.3 บทบาทของสารประกอบฟืนอลต่อการเกิดโรคมะเร็ง

บทบาท	ตัวอย่างของสารประกอบฟื้นอล
Carcinogenic	Catechol, sesamol, caffeic acid, hydroquinone, BHA
Co-carcinogenic	Catechol, caffeic acid, hydroquinone, BHA
Promoting	Phenols, BHA, BHT
Anticarcinogenic	Catechol, quercetin, ellagic acid, chlorogenic acid, BHT, BHA,
	caffeic acid, tannins, flavanols, other polyphenol

ที่มา : Weisburger (1992) อ้างโดย วิวัฒน<mark>์ (</mark>2545)

สำหรับกลไกในการป้องกันการเกิดโรคมะเร็งของสารประกอบพื้นอลมีลักษณะ เช่นเดียวกันกับ phytochemical อื่นๆ ในพืช ซึ่ง Wattenberg (1995) และวรรณี (1999) รายงานว่าสามารถแบ่งออกเป็น 3 ลักษณะ คือ

- 1. การป้องกันกา<mark>รเกิดสารก่อมะเร็งแ</mark>ละการป้องกันการดูดซับสารก่อมะเร็ง
- 2. การป้องกันไม่ให้สารก่อมะเร็งทำปฏิกิริยากับโมเลกุลเป้าหมาย (blocking agents)
- 3. การ<mark>ยับยั้</mark>งหรือกดการเปลี่ยนแป<mark>ลงของเซลล์ที่ไ</mark>ด้รับสารก่อมะเร็งไม่ให้ เปลี่ยนเป็นเ<mark>ซลล์มะเร็ง</mark> (suppressing agents)

สารประกอบพื้นอลซึ่งมีคุณสมบัติเป็นสารต้านออกซิเดชันเป็นสารประกอบที่ สามารถพบได้ตามธรรมชาติในพืช การนำพืชที่มีสารประกอบฟินอลมาใช้เป็นอาหารจึงเท่ากับ เป็นการเพิ่มสารต้านออกซิเดชันให้กับร่างกายด้วยวิธีหนึ่ง แต่เนื่องจากข้อมูลในด้านต่างๆ เกี่ยวกับ สารประกอบฟินอลในผักผลไม้ของไทยยังมีอยู่น้อย จึงควรมีการศึกษาเพิ่มเติม เพื่อส่งเสริมให้มี การใช้ประโยชน์จากผักผลไม้ของไทยในรูปแบบต่างๆ ให้กว้างขวางมากยิ่งขึ้น (วิวัฒน์ ,2545)

2.4 การพาสเจอร์ไรส์

การพาลเจอร์ไรส์ เป็นกระบวนการให้ความร้อนที่ไม่ถึงกับมากพอจะฆ่าเชื้อจุลินทรีย์ให้ หมดไปได้ แต่การใช้ความร้อนระดับปานกลาง ประมาณ 175 °F เวลา 20 นาที เพื่อทำลาย เชื้อจุลินทรีย์ที่เป็นอันตรายต่อผู้บริโภค เนื่องจากน้ำผลไม้ทั่วๆ ไป จะอยู่ในลักษณะที่เป็นกรด หรือ pH ต่ำกว่า 4.5 ฉะนั้นสปอร์ของเชื้อแบคทีเรียที่เป็นโทษต่อสุขภาพของคนจะไม่สามารถ เจริญเติบโตได้ การใช้ความร้อนระดับนี้เป็นเพียงใช้ทำลายเนื้อเยื่อหรือที่เรียกว่าเซลล์ของ แบคทีเรีย รา และยีสต์เท่านั้น การทำลายเชื้อยีสต์เพียงอย่างเดียวใช้อุณหภูมิขนาด 140-150 °F เวลา 2-3 นาที สำหรับโอกาสที่ใช้อุณหภูมิ 175°F นั้น เป็นการทำลายสปอร์ของพวกราที่มีอยู่ ทั่วไป เพราะเชื้อราเป็นพวกที่ต้องการอาหารหรือออกซิเจน ฉะนั้นในเครื่องดื่มที่อัดด้วยก๊าซ คาร์บอนไดออกไซด์อาจไม่จำเป็นต้องใช้อุณหภูมิถึง 175°F ก็ได้ เพราะต้องการทำลายแต่เฉพาะ พวกยีสต์ซึ่งขึ้นได้ในสภาพที่ไม่มีอากาศ ฉะนั้นอาจใช้อุณหภูมิเพียง 150°F เพื่อทำลายเซลล์ของ ยีสต์ก็เพียงพอแล้ว เพราะกรดในน้ำผลไม้จะเป็นตัวช่วยในการเก็บรักษาน้ำผลไม้ไม่ให้เสื่อมเสีย น้ำผลไม้ที่มีกรดสูงๆ อาจจะใช้อุณหภูมิทำการพาสเจอร์ไรส์เพียง 160-165°F ก็เพียงพอ

2.4.1 วิธีการพาสเจอร์ไรส์

วิธีการพาสเจอร์ไรส์ที่ใช้กันมี 2 ระบบคือ ระบบต่อเนื่องและระบบที่ไม่ต่อเนื่อง เครื่องมือที่ใช้ประกอบด้วยท่อโลหะปลอดสนิมหรือท่อทำด้วยหลอดแก้วสำหรับให้น้ำผลไม้ไหล ผ่านเข้าไป และภายนอกหลอดหุ้มด้วยท่อหรือหลอดอีกชั้นหนึ่งเป็นทางให้ไอน้ำร้อนหรือน้ำร้อน เข้าไปโดยสามารถควบคุมอุณหภูมิและระยะเวลาที่จะสัมผัสกับน้ำผลไม้ได้ จากนั้นจึงผ่านเข้า เครื่องทำความเย็นทันทีและส่งบรรจุขวด ระบบต่อเนื่องนี้มีหลายแบบ เช่น อาจจะเป็นแบบใช้ ความร้อนมาจากไอน้ำ ซึ่งให้ความร้อนค่อนข้างสูงและควบคุมลำบาก และอีกแบบเป็นชนิดที่ได้รับ ความร้อนมาจากน้ำร้อน ซึ่งสามารถควบคุมอุณหภูมิได้ ปกติจะใช้อุณหภูมิของน้ำร้อนสูงกว่าของ น้ำผลไม้ประมาณ 3 °C สำหรับวิธีไม่ต่อเนื่องส่วนใหญ่จะใช้หม้อต้มที่มีไอน้ำอยู่รอบๆ เป็นการให้ ความร้อนแก่น้ำผลไม้ธรรมดาก่อนบรรจุ สำหรับอุณหภูมิบรรจุน้ำผลไม้โดยวิธีธรรมดาทั่วๆ ไป จะ ใช้อุณหภูมิ 175-180 °F บรรจุขวดหรือกระป้อง แล้วผนึกทันทีแล้วทำให้เย็น การพาสเจอร์ไรส์ นอกจากจะกระทำโดยการให้ความร้อนแก่น้ำผลไม้โดยตรงแล้วอาจจะให้ความร้อนน้ำผลไม้ที่ บรรจุแล้วก็ได้อย่างเช่นในขวดหรือกระป้อง

บทที่ 3 วิธีดำเนินงาน

3.1	วัตถุดิบ				
	3.1.1 ลูกหนามแดง	-	กรุงเทพ และปริมณ	୩ନ	ประเทศไทย
	3.1.2 น้ำตาลทราย	ตรา มิตรผล	น้ำตาลมิตรผล จำกั	Pl	ประเทศไทย
	3.1.3 กรดชิตริก	Ajex	Ajex		ออสเตรเลีย
3.2	อุปกรณ์				
	3.2.1 อุปกรณ์การผลิต				
	3.2.1.1 อุปกรณ์งานครัว		ตรา หัวม้าลาย		ประเทศไทย
	3.2.1.2 เครื่องปั่นผสม		Hamilton beach		สหรัฐอเมริกา
	3.2.1.3 เครื่อง ชั่งขนาด 5	00 กรัม	Ingship		-
	3.2.1.4 นาฬิกาจับเวลา		Casio		ญี่ปุ่น
	3.2.1.5 ขวดสำหรับบรรจุ	3	Wellgrow Glass Inc	dustry	ประเทศไทย
	3.2.1.6 ผ้าขาวบาง		ร้านเพิ่มพูล		ประเทศไทย
	3.2.1.7 เทอร์โมมิเ <mark>ตอร์</mark>		Taiwan		ได้หวัน
	3.2.2 เครื่องมือ <mark>และอุป</mark> กร	ณ์ในการวิเครา	ะห์ทางเคมี		
	3.2.2.1 เครื่องซึ่งไฟฟ้าละ		SARTORIUS	GMBH	เยอรมัน
	ตำแหน่ง		GOTTINGEN		W W B CO
	3		B1209	турс	
	3.2.2.2 กระบอกต _ั วงขนาด	50. 100 ml	Pyrex		เยอรมัน
	3.2.2.3 กรวยแก้วขนาดใน	68255	Pyrex		เยอรมัน
	และเล็ก		. yiex		1001114
	3.2.2.4 ขวดบรรจุสารเคมี	จี๋ซา ฑบาด	Pyrex		เยอรมัน
	500 ml		Tytex		ម្រាប់ម្ចា
	3.2.2.5 ขวดปรับปริมาตร	ขาบค 5A	Schott		1810 00 10 1
	100, 250, 500 m	•	SCHOU		เยอรมัน
	3.2.2.6 บิวเรต ขนาด 250		O		
	OCZ IVI ME INPET OCZ.Z.O.	IIII	Pyrex		เยอรมัน

3.2.2.7 บีกเกอร์ ขนาด 50, 100, 500, 1000 ml Pyrex เยอรมัน 3.2.2.8 ปีเปต ขนาด 1, 5, 10 ml Pyrex เยอรมัน 3.2.2.9 ฟลาสก์ ขนาด 250 ml Pyrex เยอรมัน 3.2.2.10 spectophotometer Hach company เยอรมัน 3.2.2.11 12 1/2" test tube Milton roy company 3.2.2.12 pH meter ญี่ปุ่น **Eutech intruments** 3.2.2.13 **เครื่องวัด**สี Hunter Lab

3.2.2 **สารเคมีที่ใ**ช้วิเคราะห์องค์ปร<mark>ะ</mark>กอบทางเคมี

3.2.3.1 กรดแกลลิก	Fluka	สเปน
(Gallic acid, C ₇ H ₆ O ₅)		
3.2.3.2 กรดซิตริก	Ajax	ออสเตรเลีย
(Citric acid, H ₃ C ₆ H ₅ O ₇)		
3.2.3.3 กรดบอริก	MERCK	เยอรมัน
(boric acid, H ₃ BO ₃)		
3.2.3.4 กรดออ <mark>กซาลิก</mark>	Ajax	ออสเตรเลีย
(Oxalic acid, (COOH) ₂ .2H ₂ O)		
3.2.3.5 กรดอะซิติก	J.T.	สหรัฐอเมริกา
(Acetic acid, CH ₃ COOH)	Baker	
(Acetic acid, CH ₃ COOH) 3.2.3.6 กรดแอสคอบิก	Ajax	ออสเตรเลีย
(L-ascorbic acid, C ₆ H ₈ O ₆)		
3.2.3.7 กรดไฮโดรคลอริก	Merck	เยอรมัน
(Hydrochloric acid, HCI)		
3.2.3.8 ไดโซเดียมไฮโดรเจนฟอสเฟต	Ajax	ออสเตรเลีย
(Disodium hydrogen		
phosphate, Na ₂ HPO ₄)		
3.2.3.9 สารประกอบ 2,6 ไดคลอโรฟีโนลินโดฟีนอล	Ajax	ออสเตรเลีย

(2,6 dichlorophenolindophenol) 3.2.3.10 สารละลายโฟลินรีเอเจนท์ MERCK เยอรมัน (Folin-Ciocalteu phenol reagent) 3.2.3.11 โซเดียมคาร์บอเนต (Sodium carbonate, Na₂CO₃) ออสเตรเลีย Ajax 3.2.3.12 โซเดียมอะซิเตด Ajax ออสเตรเลีย (Sodium acetate, CH₂CHOONa) 3.2.3.13 โซเดียมไฮโดรเจรคาร์บอเนต ออสเตรเลีย Aiax (Sodium hydrogen carbornate, NaH₂CO₃) 3.2.3.14 โพแทสเซียมคลอไรด์ ออสเตรเลีย Ajax (Potassium Chloride, KCI) 3.2.3.15 โพแทสเซียมเมตาไบซัลเฟต ออสเตรเลีย Ajax (Potassium metabisulphite, K₂S₂O₅) 3.2.3.16 โพแทสเซียมไฮโดร<mark>เจนพาทา</mark>เลต ออสเตรเลีย Ajax (PotassiumHydrogenPhthalate, C₆H₄COOHCOOK) 3.2.3.17 เอทานอล 95% องค์การ ประเทศไทย (Ethanol, C, H, OH) สุราไทย

3.3 สถานที่ทำการทดลอง

ห้องปฏิบัติการอาหาร 710

คณะเทคโนโลยีคหกรรมศาสตร์ มหาวิทยาเทคโนโลยีราชมงคลกรุงเทพ พระนครใต้ ที่อยู่ 149 ถนนเจริญกรุง แขวงยานนาวา เขตสาทร กรุงเทพมหานคร 10120 โทรศัพท์ 0-2211-2052, 0-2211-2056 โทรสาร 0-2211-2040

3.4 ระเบียบวิธีวิจัย

3.4.1 การศึกษากรรมวิธีการผลิตลูกหนามแดงพร้อมดื่ม(มะม่วงหาวมะนาวโห่)

นำลูกหนามแดงที่ผ่านการแช่แข็งที่อุณหภูมิ –18 องศาเซลเซียส จำนวน 500 กรัม มาละลายน้ำแข็งและ นำมาผ่าเอาเม็ดออก จากนั้นนำไปปั่นด้วยเครื่อง เครื่องปั่นผสม Hamilton beach จนละเอียด แล้วกรองด้วยผ้าชาวบาง เอาส่วนที่เป็นกากออก และกรองซ้ำอีกครั้ง ส่วนที่ เป็นของเหลวที่ได้ มาวิเคราะห์ คุณภาพดังต่อไปนี้

3.4.1.1 ปริมาณของแข็ง<mark>ที่</mark>ละลายได้ทั้งหมด (total soluble solids)

ใช้การวัดด้วย Ha<mark>n</mark>d refractometer

3.4.1.2 ปริมาณกรดที่ไดเตรทได้ทั้งหมด

ปริมาณกรดหาได้โดยการปีเปตตัวอย่าง 1 มิลลิลิตร ใส่น้ำกลั่น ให้มี ปริมาณครบ 10 มิลลิลิตร หยด phenolpthalein 1%นำมาไทเทรตด้วย NaOH 0.1 N สังเกตจุดยุติ (end point) จะเปลี่ยนเป็นสีชมพูจาง ๆ แล้วนำไปคำนวณหาปริมาณกรดชิตริกตามสูตรที่ (1)

Citric acid (g/100ml) =
$$\frac{(V)(N)(70)(100)}{1000 \text{ x y}}$$
 (1)

มื่อ v = ปริมาณของตัวอย่างที่ใช้
V = ปริมาณของ NaOH ที่ใช้
N = normality ของ NaOH

3.4.1.3 ค่าควา<mark>มเป็นกร</mark>ดด่าง (pH)

้น้ำน้ำลูกหนามแ<mark>ดงที่คั้นได้ไ</mark>ปวัดค่าความเป็นกรด-ด่าง โดยใช้ pH meter

3.4.1.4 ปริมาณสารประกอบฟืนอลิกทั้งหมด

ใช้การวิเคราะห์สารประกอบฟืนอลิกทั้งหมดด้วยวิธี Folin – Ciocalteu ตามวิธีการของ เสกสรร วงศ์ศิริ (2546)

ใส่ตัวอย่างน้ำหนามแดง 0.1 ml ลงในขวดวัดปริมาตรที่มี deionized water อยู่ 60 – 75 ml แกว่งขวดวัดปริมาตรเพื่อให้เกิดการผสมกัน เติม Folin – Ciocalteu reagent ลงไป 5 ml แกว่งขวดวัดปริมาตรเพื่อผสมกันอีกครั้ง ภายใน 1 – 8 นาที เติมสารละลาย Sodium carbonate ความเข้มข้น 20 % w/v ลงไป 15 ml ผสมให้เข้ากันก่อนปรับปริมาตรให้ครบ 100 ml ด้วย deionized water ผสมอีกครั้งก่อนเก็บไว้ 2 ชั่วโมงเพื่อให้เกิดสี (เริ่มต้นจับเวลาทันทีที่ เติม Sodium carbonate) วัดค่าการดูดกลืนแสงที่ความยาวคลื่น 760 นาโนเมตรด้วยเครื่อง spectrophotometer คำนวณปริมาณสารประกอบฟืนอลิกทั้งหมดที่วิเคราะห์ได้ โดยใช้กราฟ มาตรฐานที่เตรียมจาก กรดแกลลิก ซึ่งทราบความเข้มข้นที่แน่นอน

(1) การเตรียมกราฟมาตรฐานของกรดแกลลิก

ชึ่งกรดแกลลิกมา 0.02 กรัมละลายในเอทานอล 95% แล้วปรับ ปริมาตรด้วยเอทานอล 95% ให้ครบ 50 มิลลิลิตร จากนั้นปีเปตสารละลายกรดแกลลิกที่เตรียมไว้ ใส่ลงในหลอดทดลองหลอดละ 0, 0.10, 0.20, 0.30, 0.40 และ 0.50 มิลลิลิตร ปรับปริมาตร ด้วยน้ำกลั่นให้เป็น 10 มิลลิลิตร ซึ่งในแต่ละหลอดทดลอง จะมีปริมาณกรดแกลลิคอยู่เท่ากับ 0, 40, 80, 120, 160 แล้ว 200 ไมโครกรัม ตามลำดับ

นำหลอดทดลองทั้งหมดมาเติมสารละลาย Folin-Ciocalteu หลอดละ 0.5 มิลลิลิตร เขย่าให้เข้ากัน ตั้งทิ้งไว้ที่อุณหภูมิห้อง 5 นาที จากนั้น เติมสารละลาย Sodium carbonate (Na₂CO₃) ความเข้มข้น 10% ลงไป 2 มิลลิลิตร ผสมให้เข้ากัน ตั้งทิ้งไว้ที่ อุณหภูมิห้อง 10 นาที นำไปวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 760 นาโนเมตร เขียนกราฟ ความสัมพันธ์ระหว่างค่าการดูดกลืนแสงดังกล่าวกับปริมาณกรดแกลลิกเป็นไมโครกรัม

3.4.1.5 ปริมาณวิตามินซี

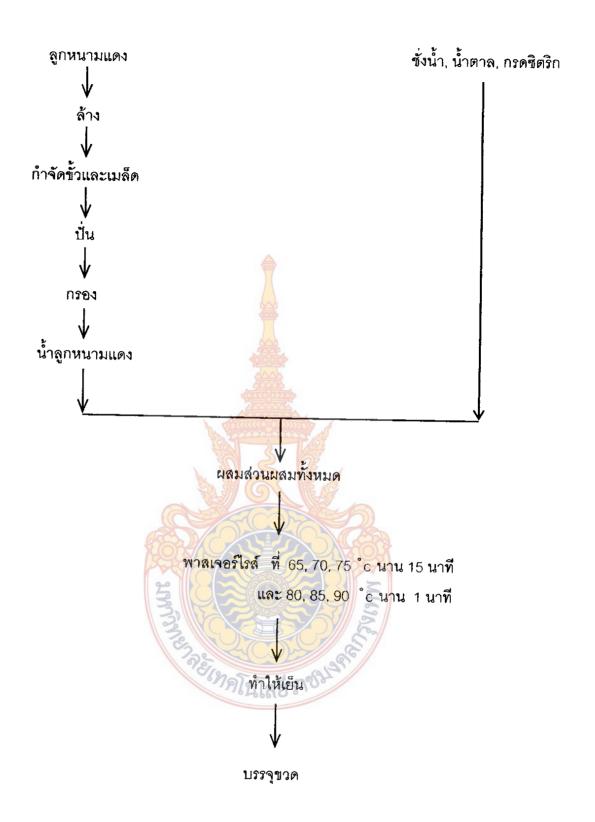
- (1) สารละลาย DCP ละลาย DCP 0.05 กรัม และ NaHCO $_3$ 0.04 กรัม ในน้ำกลั่น 400 ml
- (2) สารละลายวิตามินซี มาตรฐาน ซั่งวิตามินซีที่บริสุทธิ์ให้ได้น้ำหนักที่ แน่นอน ประมาณ 0.1 กรัม เติม Oxalic acid ลงไป 1 กรัม ละลายน้ำ ปรับปริมาตรให้ครบ 100.00 ml ในขวดปรับปริมาตร 100 ml
- (3) หาความเข้มข้นที่แน่นอนของ DCP ปีเปตสารละลายวิตามินชื่ มาตรฐานที่เตรียมไว้ 2 ml ใน flask ขนาด 250 ml นำไปไตเตรทกับสารละลาย DCP จน สารละลายเปลี่ยนจากใสไม่มีสีเป็นสีชมพู ซึ่งเป็นจุดยุติในการไตเตรท คำนวณหาปริมาณวิตามินซี (mg) ที่ทำปฏิกิริยาพอดีกับ DCP 1 ml ค่านี้เรียกว่า Equivalency factor
- (4) หาปริมาณ<mark>วิตามิน</mark>ซี ตัวอย่าง โดยนำตัวอย่างที่เตรียมมาแล้วมาไตเต รทกับ DCP จนได้สีชมพูอ่อน ซึ่งสีจะคงตัวอยู่นานกว่า 15 วินาที จดปริมาตร DCP ที่ใช้ 3.4.3.9.5 คำนวณหาปริมาณวิตามินซี

3.4.1.6 การวัดค่าสื

<mark>ใช้การการวัดค่า</mark>สีในระบบ CIE L* a* b* ด้วยเครื่องวัดสีรุ่น Hunter Lab

3.4.2 ศึกษาผลของการให้ความร้อนต่อการยอมรับทางด้านประสาทสัมผัสใน ลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม

3.4.2.1 วิธีการผลิตน้ำลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม


นำลูกหนามแดง ที่แช่เยือกแข็งมาผ่าครึ่ง เอาเมล็ดออก จากนั้นนำไปปั่น ด้วยเครื่องปั่นอาหาร และคั้นน้ำ จากนั้นนำน้ำลูกหนามแดงที่ได้มาผลิตน้ำลูกหนามแดงพร้อมดื่ม 25% โดยมีปริมาณของส่วนผสมดังตารางที่ 3.1 และมีกรรมวิธีการผลิตดังรูปที่ 3.1

ตารางที่ 3.1 ส่วนผสมของน้ำลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม

52.25
25.00
22.33
0.42

3.4.2.2 การพาสเ<mark>จอร์ไรส์ลูกหนามแดง</mark>

นำน้ำลูกหนามแดงที่ได้ให้ความร้อนด้วยวิธีการพาสเจอร์ไรส์แบบ HTST (High Temperature Short Time) ที่อุณหภูมิ 80, 85 และ 90 องศาเซลเซียส เป็นเวลา 1 นาที และ LTLT (Low Temperature Long Time) ที่อุณหภูมิ 65, 70 และ 75 องศาเซลเซียส เป็นเวลา 15 นาที จากนั้นทำให้เย็นทันที บรรจุตัวอย่างลงในชาดที่สะอาด เก็บตัวอย่างไว้ในตู้เย็นที่ อุณหภูมิ 10 องศาเซลเซียส เพื่อรอการวิเคราะห์

ภาพที่ 3.1 กรรมวิธีการผลิตน้ำลูกหนามแดงพาสเจอไรส์พร้อมดื่ม

น้ำน้ำลูกหนามแดงที่ได้มาทดสอบด้านประสาทสัมผัสด้านสี กลิ่น รสชาติ ความใส และความชอบรวม โดยการให้คะแนน 9 point ตามวิธี Hedonic Scaling โดยคะแนน 9 คะแนน หมายถึง ชอบมากที่สุด และ 1 คะแนน หมายถึง ไม่ชอบมากที่สุด โดยใช้ผู้ทดสอบซิม จำนวน 30 คน วางแผนการทดลองแบบ CRD (Completely Randomized Design) วิเคราะห์ผล ทางสถิติโดยใช้ตาราง ANOVA และเปรียบเทียบความแตกต่างชองค่าเฉลี่ยโดยวิธี LSD (The least Significant difference)

3.4.3 ศึกษาการเปลี่ยนแปลงคุณภาพระหว่างการเก็บรักษาน้ำ ลูกหนามแดงพาสเจอไรส์พร้อมดื่ม

น้ำตัวอย่างที่ผ่านการให้<mark>ควา</mark>มร้อนด้วยการพาสเจอร์ไรส์ที่อุณหภูมิและเวลาที่ ต่างกัน ในข้อ 3.4.2.2 มาทำการเก็บรักษ<mark>าในอุณหภู</mark>มิ 10 องศาเซลเซียส เป็นเวลา 7 สัปดาห์

บทที่ 4 ผลการทดลองและวิจารณ์

4.1 ผลการศึกษากรรมวิธีการผลิตลูกหนามแดงพร้อมดื่ม(มะม่วงหาวมะนาวให่)

ในการผลิตน้ำผลไม้มีความจำเป็นที่ต้องทราบถึงองค์ประกอบต่างๆ ที่มีในผลไม้ ซึ่ง อาจจะส่งผลต่อคุณภาพของผลิตภัณฑ์ที่ผลิตได้ ดังนั้น การทดลองนี้จึงได้ศึกษาถึงองค์ประกอบ ต่างๆ ของน้ำลูกหนามแดง โดยสกัดน้ำลูกหนามแดงแล้วนำมาตรวจสอบคุณภาพ ผลการทดลองที่ได้แสดงดังตารางที่ 4.1

ตารางที่ 4.1 คุณภาพของน้ำคั้นที่ได้จากผ<mark>ลลูก</mark>หนามแดง

9	
ลักษณะคุณภาพ	ปริมาณ
ปริมาณของแข็งที่ละลายได้ทั้งหมด (°Brix)	8±0.400
ปริมาณกรดที่ไตเตรทได้ (% as citric acid)	2.8±0.030
ค่าความเป็นกรดด่าง (pH)	2.8±0.200
ปริมาณสารประกอบฟื่นอล <mark>ีกทั้งหมด (mg/100 ml)</mark>	38.439±0.011
ปริมาณวิตามินซี (μg/ml)	ไม่พบ
ค่าสี	SOUTH THE PARTY OF
L* a*	12.467±0.006
a*	15.493±0.012
b*	3.030±0.000
1/ •	

¹ ในการคำนวณใช้ค่า E^{1%}_{เcm} ของผลแครนเบอรี่ซึ่งมีค่าเท่ากับ 982 (เสกสรร วงศ์ศิริ, 2546) และวัดค่าการ ดูดกลืนแสงที่ความยาวคลื่น 510 นาโนเมตร

4.2 ผลการศึกษาการให้ความร้อนต่อการขอมรับทางด้านประสาทสัมผัสใน ลูกหนามแดงพาสเจอร์ไรส์พร้อมดื่ม

ในการผลิตน้ำลูกหนามแดงพาสเจอร์ไรส์จำเป็นจะต้องมีการทดสอบชิมเพื่อประเมินการ ทดสอบการยอมรับชองผู้บริโภค โดยนำน้ำลูกหนามแดงที่ผ่านการพาสเจอร์ไรส์ที่อุณหภูมิและ เวลาที่ต่างกันได้แก่ อุณหภูมิ 65, 70 และ 75 องศาเซลเซียส เป็นเวลา 15 นาที และ อุณหภูมิ 80, 85 และ 90 องศาเซลเซียส เป็นเวลา 1 นาที แล้วนำมาทดสอบชิมทางด้านประสาทสัมผัสด้านสี กลิ่น รสชาติ ความใส และความชอบรวม โดยคะแนน 9 คะแนน หมายถึง ชอบมากที่สุด และ 1 คะแนน หมายถึง ไม่ชอบมากที่สุด ใช้ผู้ทดสอบชิมจำนวน 30 คน ให้คะแนนแบบ 9 point Hedonic Scale ได้ผลดังตารางที่ 4.2

ตารางที่ 4.2 แสดงคะแนนเฉลี่ยการทดสอ<mark>บคุ</mark>ณลักษณะทางประสาทสัมผัส ของน้ำลูกหนามแดง พาสเจอร์ไรส์ 25% ที่ผ่านกา<mark>รให้ค</mark>วามร้อนในอุณหภูมิและเวลาที่แตกต่างกัน

อุณหภูมิ	คุณลักษณะด้านประสาทสัมผัส				
และเวลา	ans	กลิ่น ^{กร}	รสชาติ ^{ns}	ความใส"	ความซอบรวม ^{กร}
อุณหภูมิ 65°c เวลา 15 นาที	6.93±1.413	6.73±1.368	6.97±1.520	6.73±1.258	6.93±1.437
อุณหภูมิ 70°c เวลา 15 นาที	6.8±1.2 <mark>1</mark> 7	6.37±1.402	6.8±1.270	6.4±1.003	6.7±0.952
อุณหภูมิ 75 °c เวลา 15 นาที	7.03±1.245	6.57±1.524	6.9±1,348	6.47±1.383	6.77±1.382
อุณหภูมิ 80°c เวลา 1 นาที	7±1.232	6.57±1.040	6.4 <mark>3±</mark> 1.569	6.7±1.368	6.73±1.507
อุณหภูมิ 85°c เวลา 1 นาที	7.01±1.081	6.43±1.278	7.1±1.094	6.6±1.248	7±1.050
อุณหภูมิ 90°c เวลา 1 นาที	6.9±1.094	6.67±1.348	6.9±1.605	6.7±1.208	6.93±1.461

หมายเหตุ : ns ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p ≥ 0.05)

จากตารางที่ 4.2 จะเห็นได้ว่าผลิตภัณฑ์น้ำลูกหนามแดงพาสเจอร์ไรส์ 25% แต่ละ อุณหภูมิและเวลา มีคุณภาพทางประสาทสัมผัสในด้านต่างๆ ดังนี้

ด้านสื

จากการวิเคราะห์ผลทางสถิติ ด้านสี พบว่าผลิตภัณฑ์น้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่ได้ทั้ง 6 อุณหภูมิ ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ

ด้านกลิ่น

จากการวิเคราะห์ผลทางสถิติ ด้านกลิ่น พบว่าผลิตภัณฑ์น้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่ได้ทั้ง 6 อุณหภูมิ ไม่มีความแตกต่างกั<mark>น</mark>อย่างมีนัยสำคัญทางสถิติ

ด้านรสชาติ

จากการวิเคราะห์ผลทางสถิติ ด้านรสชาติ พบว่าผลิตภัณฑ์น้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่ได้ทั้ง 6 อุณหภูมิ ไม่มีความแตกต่<mark>างกันอย่</mark>างมีนัยสำคัญทางสถิติ

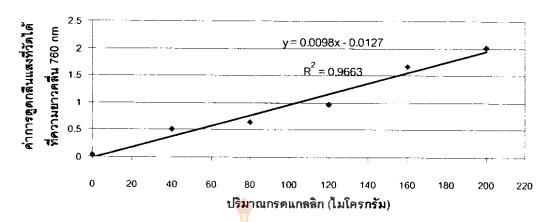
ด้านความใส

จากการวิเคราะห์ผลทางส<mark>ถิติ ด้านความใส พ</mark>บว่า ผลิตภัณฑ์น้ำลูกหนามแดงพาสเจอร์-ไรส์ 25% ที่ได้ทั้ง 6 อุณหภูมิ ไม่ม<mark>ีความแตกต่างกันอย่าง</mark>มีนัยสำคัญทางสถิติ

ด้านความชอบรวม

จากการวิเคร<mark>าะห์ผลทางสถิติ ด้านความชอบรวม พบ</mark>ว่า ผลิตภัณฑ์น้ำลูกหนามแดง พาสเจอร์ไรส์ 25% ที่ได้ทั้ง 6 อุณหภูมิ ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ

รียากลังการโนโลยีราชานารา


4.3 ผลการศึกษาการเปลี่ยนแปลงคุณภาพระหว่างการเก็บรักษา น้ำลูกหนามแดงพาสเจอไรส์พร้อมดื่ม

ผลการทดลองพบว่า เมื่อเก็บน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% เป็นเวลานานขึ้น จะทำ ให้ปริมาณสารประกอบฟืนอลิกมีปริมาณลดลงดังตารางที่ 4.3 และภาพที่ 4.2

ตารางที่ 4.3 ปริมาณสารประกอบฟืนอลิกทั้งหมด ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุ ในขวดแก้วโปร่งแสงระหว่างกา<mark>ร</mark>เก็บรักษา

ระยะเวลา	ปริมาณสารประก <mark>อ</mark> บฟืนอลิกทั้งหมด (มิลลิกรัม/มิลลิลิตร)							
(สัปดาห์)	65°C 15นาที	70°C 15นาที	75 C 15นาที	80°C 1 นาที	85°C 1นาที	90°C 1นาที		
0	22.316±0.004	22.827±0.004	22.929±0.003	23.031±0.005	24.255±0.007	23.235±0.001		
1	21.194±0.003	21.194±0.002	22.010±0.002	22.418±0.001	22.724±0.001	23.235±0.001		
2	20.786±0.002	20.786±0.002	21.806±0.001	21.602±0.002	21.398±0.001	21.500±0.002		
3	20.582±0.002	20.786±0.002	20.786±0.002	21.398±0.002	21.398±0.001	20.99o±0.002		
4	20.378±0.003	19.459±0.001	20.276±0.002	21.092±0.002	21.194±0.002	20.888±0.003		
5	17.929±0.002	18.949±0.002	19.255±0.003	18.847±0.004	19.653±0.004	19.867±0.003		
6	17.214±0.003	16.908±0.002	19.051±0.002	17.520±0.003	18.337±0.002	15.173±0.003		
7	12.214±0.003	10.480±0.004	13.235±0.003	13.541±0.003	12.929±0.001	13.031±0.002		

ภาพที่ 4.1 กราฟมาตรฐานการวิเ<mark>คร</mark>าะห์ปริมาณสารประกอบฟืนอลิกทั้งหมด

ภาพที่ 4,2 ปริมาณสารประกอบฟืนอลิกทั้งหมดในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้วโปร่งแสงระหว่างการเก็บรักษาที่อุณหภูมิ 10 องศาเชลเชียส

.

เมื่อพิจารณาค่าสีในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ระหว่างการเก็บรักษา (ตารางที่ 4.4 – 4.7) พบว่าในระหว่างการเก็บรักษาน้ำลูกหนามแดง ค่า L* ซึ่งเป็นค่าที่บ่งบอกถึงค่าความ สว่างของผลิตภัณฑ์เพิ่มขึ้น ซึ่งสัมพันธ์กับผลการทดลองของเสกสรร วงศ์ศิริ (2546) ที่ศึกษาการ เปลี่ยนแปลงคุณภาพด้านสีระหว่างการเก็บรักษาน้ำเม่า 25% ซึ่งมีค่าสี L* เพิ่มขึ้นระหว่างการเก็บ รักษา ทั้งนี้ค่า L* ที่ลดลงเป็นผลมาจากการเสื่อมสลายของแอนโทไซยานิน ในผลิตภัณฑ์ ระหว่างการเก็บรักษา ขณะที่ค่า a* ซึ่งเป็นค่าบ่งบอกถึงสีแดงในน้ำลูกหนามแดง ระหว่างการเก็บรักษา ลดลง แสดงแนวโน้มการเกิดสีน้ำตาล

ตารางที่ 4.4 ปริมาณสีเพอริเมอริกในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้วโปร่ง แสงระหว่างการเก็บรักษา

ระยะเวลา	ปริมา <mark>ณสีเ</mark> พอริเมอริก/PC (O.D. units)							
(สัปดาห์)	65 °C 15นาที	70°C 15นาที่	75 °C 15นาที	80°C 1นา ที	85 °C 1นา ที	90°C 1นาที		
0	0.853	0.893	0.853	0.834	0.056	0.855		
1	0.895	0.896	0.853	0.834	0.821	0.855		
2	0.943	0.896	0.88	0.873	0.821	0.873		
3	0.951	0.911	0.912	0.929	0.895	0.901		
4	0.951	0.993	0.945	0.948	0.931	0.944		
5	0.97	1.014	0.992	0.978	0.963	0.949		
6	0.981	1.019	1.005	0.983	0.975	1.005		
7	1.053	1.084	1.186	1.029	1.032	1.006		

ตารางที่ 4.5 ค่าสี L* ในน้ำลูกห<mark>นามแดงพาสเจอร์ไรส์ 2</mark>5% ที่บรรจุในขวดแก้วโปร่งแสงระหว่าง การเก็บรักษา

ระยะเวลา		ค่าสื L*						
(สัปดาห์)	65 °C 15นาที	70°C 15นาที	75 °C 15นาที	80°C 1นาที	85°C 1นาที	90°C 1 นาที		
0	8.700±0.026	8.690±0.210	7.597±0.031	6.537±0.067	6.127±0.076	6.413±0.074		
1	9.583±0.110	10.573±0.015	10.227±0.040	10.227±0.131	10.413±0.031	10.300±0.020		
2	10.407±0.015	10.783±0.031	10.293±0.017	10.720±0.035	10.473±0.020	10.35±0.036		
3	10.843±0.011	10.830±0.015	10.340±0.012	10.743±0.016	10.803±0.041	10.513±0.040		
4	10.863±0.017	11.170±0.060	10.783±0.009	10.963±0.013	11.153±0.050	10.633±0.027		
5	11.327±0.009	11.903±0.011	11.277±0.025	11.337±0.020	11.497±0.007	10.767±0.020		
6	12.057±0.037	13.033±0.011	11.707±0.012	11.450±0.042	11.517±0.007	10.910±0.025		
7	13.037±0.020	13.630±0.061	13.610±0.146	11.860±0.006	11.533±0.045	11.373±0.009		

ตารางที่ 4.6 ค่าสี a* ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้วโปร่งแสงระหว่าง การเก็บรักษา

ระยะเวลา	ค่าสื a*							
(สัปดาห์)	65 °C 15นาที	70 °C 15นาที	75 °C 15นา ที	80°C 1นาที	85 °C 1 บาที	90 °C 1นาที		
0	11.373±0.001	12.560±0.006	13.233±0.017	13.140±0.012	13.170±0.006	13.527±0.009		
1	10.91±0.000	12.443±0.018	13.047±0.012	12.973±0.009	12.747±0.012	12.763±0.015		
2	10.767±0.000	12.027±0.014	13.04±0.010	12.730±0.006	12.650±0.012	12.717±0.014		
3	10.633±0.001	11.453±0.007	12.843±0.010	12.477±0.021	11.900±0.079	12.220±0.012		
4	10.513±0.000	11.387±0.025	12.113±0.067	11.483±0.028	11.757±0.007	11.767±0.005		
5	10.350±0.030	10.567±0.010	1 <mark>0</mark> .230±0.000	10.213±0.009	11.287±0.016	11.350±0.030		
6	10.300±0.000	9.147±0.118	8.723±0.057	8.340±0.040	6.780±0.103	7.853±0.178		
7	6.413±0.000	5.573±0.236	6.393±0.423	5.013±0.199	4.173±0.139	3.403±0.283		

ตารางที่ 4.7 ค่าสี b* ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้วโปร่งแสงระหว่าง การเก็บรักษา

ระยะเวลา	ค่าสี b*							
(สัปดาห์)	65°C 15นาที	70 °C 15มาที	75°C 15นาที	80°C 1นาที	85 °C 1นาที	90°C 1นาที		
0	3.450±0.000	3.133±0.000	4.257±0.030	3.013±0.006	3.370±0.006	4.097±0.006		
1	2.750±0.2 <mark>5</mark> 9	2.180±0.123	1.80 <mark>0±0.235</mark>	2.160±0. <mark>1</mark> 37	1.937±0.169	2.153±0.190		
2	3.263±0.0 <mark>1</mark> 2	3.5 <mark>87±</mark> 0.006	3.837±0.015	3.917±0. <mark>0</mark> 15	3.650±0.010	3.703±0.015		
3	3.510±0.010	3. <mark>663±0.</mark> 015	4.64 <mark>7±</mark> 0.045	4.217±0.025	3.870±0.020	3.580±0.020		
4	0.817±0.153	0.623±0.372	1.233±0.130	0.403±0.208	0.433±0.278	0.267±0.165		
5	3.470±0.010	3.350±0.050	4.040±0.020	4.5 <mark>0</mark> 7±0.012	4.187±0.015	4.677±0.015		
6	3.317±0.055	3.373±0.025	4.227±0.050	4.393±0.045	4.540±0.062	4.627±0.065		
7	3.343±0.071	3.497±0.015	3.447±0.040	4.120±0.062	4.240±0.035	4.230±0.030		

จากการเปลี่ยนแปลงของค่า L* และ a* ดังกล่าวส่งผลให้ค่า ΔE* ในระหว่างการเก็บ รักษาของน้ำลูกหนามแดงเพิ่มขึ้น เมื่อเทียบกับที่เวลา 0 สัปดาห์ โดยหาค่า ΔE* ที่มากกว่า 1 แสดงว่าการเปลี่ยนแปลงของสีเกิดขึ้นในผลิตภัณฑ์สามารถมองเห็นได้ด้วยตาเปล่า

เมื่อน้ำค่าสีที่ได้จากการวัดในระบบ CIE L* a* b* มาคำนวณเป็นค่า C* ซึ่งเป็นค่าที่ แสดงถึงความเข้มของผลิตภัณฑ์ และค่า Δ H* ซึ่งค่าที่แสดงถึงการเปลี่ยนแปลงของเฉดสี (ตาราง ที่ 4.9 และ 4.10) พบว่าในระหว่างการเก็บรักษาน้ำลูกหนามแดง ค่า Δ H* เพิ่มขึ้นแสดงให้เห็นว่า ในระหว่างการเก็บรักษามีการเปลี่ยนแปลงของเฉดสีเกิดขึ้น

ตารางที่ 4.8 ค่าสี ∆E* ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้วโปร่งแสง ระหว่างการเก็บรักษา

ระยะเวลา		ΔE*							
(สัปดาห์)	65°C 15นาที	70 °C 15นาที	75°C 15นาที	80°C 1นา ที	85 C 1นาที	90°C 1นาที			
0	1.577	1.073	0.517	0.805	2.212	2.178			
1	1.577	1.086	0.540	1.186	3.151	2.254			
2	2.164	1.190	0.629	1.308	3.151	2.774			
3	2.164	1.190	0.858	1.422	3.155	2.774			
4	2.847	1.313	1.083	1.614	3.193	2.863			
5	3.708	1.439	1.083	1.614	3.24	2.863			
6	3.966	2.135	2.128	2.353	3.444	2.968			
7	4.115	2.135	2.128	2.353	.444	3.163			

ตารางที่ 4.9 ค่าสี C⁺ ในน้ำลูกห<mark>นามแดงพาสเจอร์ไรส์ 2</mark>5% ที่บรรจุในขวดแก้วโปร่งแลงระหว่าง

ระยะเวลา		of falls				
(สัปดาห์)	65 °C 15นาที	70°C 15 นาที	75°C 15นาที	80 °C 1นาที	85°C 1นาที	90°C 1นาที
0	14.134	13.171	13.593	13.658	12.176	12.276
1	13.901	13.152	13.319	13.170	11.770	12.039
2	13.594	12.943	13.245	12.734	11.765	11,163
3	13.481	12.893	13.166	12.513	11.490	11.085
4	12.945	12.633	12.551	12.025	11.404	11.085
5	12.945	12.633	12.551	12.025	11.404	10.999
6	11.885	11.251	11.251	11.197	10.545	10.916
7	11.885	11.251	11.251	11.197	10.545	10.916

ตารางที่ 4.10 ค่าสี ∆H* ในน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% ที่บรรจุในขวดแก้วโปร่งแสง ระหว่างการเก็บรักษา

ระยะเวลา	Δн•						
(สัปดาห์)	65°C 15นาที	70°C 15 นาที	75 °C 15นาที	80°C 1นาที	85 °C 1นาที	90°C 1นาที	
0	0.015	0.016	0.467	0.513	1.832	0.745	
1	0.015	0.016	0.501	0.808	1.986	0.745	
2	0.066	0.934	0.545	0.808	1.986	0.938	
3	0.270	0.934	0.572	0.887	2.347	0.938	
4	0.615	1.029	0.572	0.893	2.347	1.386	
5	0.615	1.065	0.595	0.893	2.596	1.577	
6	0.665	1.24	0.595	1.063	2.605	1.854	
7	0.892	1.434	0.704	1.368	2.782	2.068	

บทที่ 5

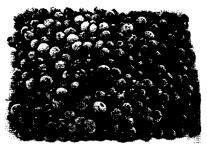
สรุปผลการทดลอง

- น้ำคั้นที่ได้จากลูกหนามแดงมี pH 2.8 ± 0.2 ของแข็งที่ละลายได้ทั้งหมด เท่ากับ 8 ± 0.4 Brix สารประกอบฟืนอลิกทั้งหมด 38.439±0.011mg/100 ml และตรวจไม่พบวิตามินซี
- 2. อุณหภูมิและเวลาที่เหมาะสมในการฆ่าเชื้อน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% คือ 85 องศาเซลเซียส 1นาที
- 3. เมื่อนำน้ำลูกหนามแดงพาสเจ<mark>อ</mark>ร์ไรส์ 25% ไปประเมินคุณภาพทางประสาทสัมผัส พบว่าน้ำลูกหนามแดงพาสเจอร์ไรส์ 25%ได้รับความชอบต่อสี กลิ่น รสชาติ ความใส และ ความชอบรวมอยู่ในช่วงชอบเล็กน้อยถึงชอบ<mark>ปา</mark>นกลางในทุกตัวอย่าง
- 4. ระยะเวลาในการเก็บรักษาน้ำลูกหนามแดงพาสเจอร์ไรส์ 25% มีผลต่อสารประกอบ ฟื้นอลิกที่มีอยู่ในผลิตภัณฑ์ ค่า ΔΕ*และค่า ΔΗ* ของน้ำลูกหนามแดงเพิ่มขึ้นตลอดเวลาระหว่าง การเก็บรักษา แสดงว่ามีการเปลี่ยนแปลงของสีเมื่อเทียบกับตัวอย่างเริ่มต้น รวมถึงการ เปลี่ยนแปลงของสีเมื่อเทียบกับตัวอย่างเริ่มต้น รวมถึงการ เปลี่ยนแปลงของเอดสีในระหว่างการเก็บรักษาด้วย

บรรณานุกรม

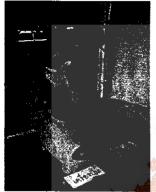
- กนกมณฑล ศรศรีวิชัย. 2523. การเก็บรักษาผลผลิตการเกษตรหลังการเก็บเกี่ยว : เทคโนโลยี และสรีรวิทยา ธนบรรณการพิมพ์ เชียงใหม่.
- กนกรส คงหอม. 2547. ผลของน้ำตาลที่มีผลต่อความคงตัวของแอนโทไชยานิน ในน้ำลูก หว้าหมัก. วิทยานิพนธ์วิทยาศาสตร์มหาบัณฑิต, (พฤกษ์เศรษฐกิจ)คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
- นิจศิริ เรื่องรังสี. 2547. สมุนไพรไทย เล่ม 1. กรุงเทพฯ : บีเฮลท์ตี้.
- ไพบูลย์ ธรรมรัตน์วาสิก. 2529. กรรมวิธีการ<mark>แป</mark>รรูปอาหาร ภาควิชาอุตสาหกรรมเกษตร มหาวิทยาลัยสงขลา – นครินทร์ สงข<mark>ล</mark>า.
- รุ่งทิวา วงศ์ไพศาลฤทธิ์. 2549. **สมบัติการต้านปฏิกิริยาออกซิเดชั่นของสารสกัดจาก**เปลือกและเมล็ดส้มเชียวหวาน. วิทยานิพนธ์ปริญญาวิทยาศาสตร์มหาบัณฑิต คณะ
 วิทยาศาสตร์การอาหาร สถา<mark>บันเทคโนโลยีพระ</mark>จอมเกล้าเจ้าคุณทหารลาดกระบัง.
- สายชล เกตุษา. 2528. สรีรวิทยาแล<mark>ะเทคโนโลยีหลังกา</mark>รเก็บเกี่ยวผักและผลไม้. โรงพิมพ์ศูนย์ ส่งเสริมและฝึกอบรมแห่<mark>งชาติอมหาวิทยาลัยเกษ</mark>ตรศาสตร์ วิทยาเชต กำแพงแสน นครปฐม.
- เลกสรร วงศ์ศิริ. 2546. ผลของกระบวนการผลิตและการเก็บรักษา ต่อเสถียรภาพของ แอนโทไซยานินในน้ำเม่า. วิทยานิพนธ์วิทยาศาสตร์มหาบัณฑิต, จุฬาลงกรณ์ มหาวิทยาลัย, กรุงเทพฯ.
- เอื้อมพร วีสมหมาย. ม.ป.ป. "<mark>ฐานข้อมูลพรรณไม้ที่ใช้ในงานสถาปัตยกรรม" [อ</mark>อนไลน์]
 เข้าถึงได้จาก : http://158.108.89.200/agbbc/Plant%20for%20Landscape%
 20WebSite/Webpage/Shrubs/%E0%B8%AB%E0%B8%99%E0%B8%B2%E0%B
 8%A1%E0%B9%81%E0%B8%94%E0%B8%87.html
 (วันที่สืบค้น 27 ธันวาคม 2550)

เอื้อมพร วีสมหมาย. ม.ป.ป. "เครื่องดื่มน้ำผลไม้" [ออนไลน์]


เข้าถึงได้จาก : http://bisd.dip.go.th/agro/HTML/eBooking/juices1.asp (วันที่สืบค้น 4 มกราคม 2551)

____.ม.ป.ป. "โครงสร้างแอนโทไซยานิน" [ออนไลน์]

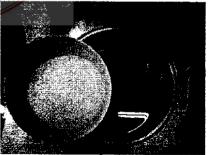
เข้าถึงได้จาก: http://images.google.co.th/images? svnum=10&um=1&hl=th&ir=lang_th&q=anthocyanin&revid=346955935&sa=X&oi=revisions_inline&resnum=0&ct=broad-revision&cd=1
(วันที่สืบค้น 4 มกราคม 2551)



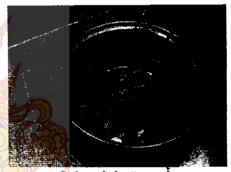
ลูกหนามแคงที่นำออกมาจากช่องแช่เยือกแข็ง

การคว้านเอาเม็ดออกจากผลลูกหนามแดง

การปับลูกหนามแดงที่คว้านเม็ดออกแล้วให้ละเอียด



น้ำคั้นที่ได้จากลูกหนามแดง และกาก


การผสมกรดชิตริกรวมกับน้ำตาลทราย

การรวมส่วนผสมทั้งหมดเข้าด้วยกับ

การพาสเจอรีไรส์น้ำลูกหนามแคงที่อุณหภูมิ และเวลาที่ต่างกัน

การพาสเจอร์ไรส์ขวดแก้วลำหรับบรรจุน้ำลูกหนามแดง

ผลิตภัณฑ์น้ำลูกหนามแดงพร้อมดื่ม

การทำน้ำลูกหนามแดงที่ผ่านการ<mark>พาสเ</mark>จอร์ไร<mark>ส์แล้</mark>วให้เย็น

การบรรจุน้ำลูกหนามแดงพาสเจอร์ไรส์ลงในขวดแก้วโปร่ง

การวิเคราะห์องค์ประกอบทางเคมี

การวิเคราะห์ปริมาณสารประกอบฟืนอลิกทั้งหมดด้วยวิธีFolin – Ciocalteu (เสกสรร วงศ์ศิริ, 2546)

การคำนวณปริมาณสารประกอบฟืนอลิก

y = 0.0098x - 0.0127

โดยที่

y = **ค่า**การดูดกลื่นแสงที่วัดได้

x = <mark>ปริ</mark>มาณสารประกอบฟืนอลิกทั้งหมด

ตารางภาคผนวกที่ 1 การวิเคราะห์ปริ<mark>มา</mark>ณสารประกอบฟื่นอลิกทั้งหมดด้วยวิธี

ระยะเวลา (สัปดาห์)	อุณหภูมิ	y	y + 0.0127	y + 0.0127
(สบตาน)	และเวลา	1 2 1		0.0098
0	65 °c 15นาที	0.115	0.1277	22.316
	70°c 15นาที	0.120	0.1327	22.316
	75°c 15นาที่	0.117	0.1297	22.316
	80 <mark>°c 1นาที</mark>	0.090	0.1027	22.316
	85 [°] c 1 <mark>นาที</mark>	0.107	0.1197	22.316
	90°c 1นาที	0.120	0.1327	22.316
1	65°c 15นาที	0.215	0.2277	21,194
	70°c 15นาที	0.197	0.2097	21.194
	75°c 15นาที	0.191	0.2037	21.194
	80°c 1นาท ี	0.211	0.2237	21.194
	85°c 1นาที	0.206	0.2187	21.194
	90°c 1นาที่	0.207	0.2197	21.194

2	65°c 15 นาที	0.215	0.2277	20.786
	70°c 15นาที	0.195	0.2077	20.786
	75°c 15นาที	0.176	0.1887	21.806
	80°c 1นาที่	0.191	0.2037	21.602
	85°c 1 นาที ่	0.191	0.2037	21.398
	90°c 1นาที	0.199	0.2117	21.500
3	65°c 15นาที	0. <mark>13</mark> 6	0.1487	20.582
	70 °c 15นาที	0.210	0.2227	20.786
	75°c 15นาที	0.201	0.2137	20.786
	80°c 1นาที	0.173	0.1857	21.398
	85°c 1นาที	0.187	0.1997	21.398
	90 °c 1นาที่	0.213	0.2257	20.99
4	65°c 15นาที	0.193	0.2057	20.378
	70°c 15นาที	0.225	0.2377	19.459
	75°c 15นาที	0.212	0.2247	20.276
	80° c 1นาที	0.191	0.2037	21.092
	85 [°] c 1น <mark>าที</mark>	0.195	0.2077	21.194
	90°c 1นาที	0.194	0.2067	20.888
5	65°c 15นาที	0.182	0.1947	17.929
	70°c 15นาที	0.182	0.1927	18.949
	75 °c 15นา ที	0.203	0.2157	19.255
	80 °c 1นาที	0.195	0.2077	18.847
	85 °c 1นาที	0.163	0.1757	19.663
 ,	90°c 1นาที	0.197	0.2097	19.867

6	65°c 15 นาที	0.198	0.2107	17.214
	70°c 15นาที	0.197	0.2097	16.908
	75°c 15 นาที	0.186	0.1987	19.051
	80°c 1นาที	0.178	0.1907	17.520
	85°c 1นาที	0.189	0.2017	18.337
	90°c 1นาที	0.172	0.1847	15.173
7	65°c 15นาที	0. <mark>1</mark> 92	0.2047	12.214
	70°c 15นาที	0. <mark>16</mark> 7	0.1797	10.480
	75 °c 15นาที	0.174	0.1867	13.235
	80°c 1นาที	0.153	0.1657	13.541
	85°c 1นาที	0.156	0.1687	12.929
	90°c านาที	0.159	0.1717	13.031

การคำนวณค่าของการเปลี่ยนสี ค่า Chroma และ ค่า Hue difference ตามวิธีของ เสกสรร วงศ์ศิริ (2546)

การคำนวณค่าการเปลี่ยนแปลงสี ดังนี้

 $\Delta E^* = [(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2]^{1/2}$

โดยที่

ΔL* = ค่า L* ของน้ำหนามแดง 25 % หลังการพาสเจอร์ไรส์ -ค่า L* ของ น้ำหนามแดง 25 % ก่อนการพาสเจอร์ไรส์

∆a* = ค่า <mark>a*</mark> ของน้ำหนามแดง 25 % หลังการพาสเจอร์ไรส์ -ค่า <mark>a*</mark> ของน้ำหนามแดง 25 % ก่อนการพาสเจอร์ไรส์

 $\Delta b^* = \dot{h}^{\dagger} b^{\dagger}$ ของน้ำหนามแดง 25 % หลังการพาสเจอร์ไรส์ - $\dot{h}^{\dagger} b^{\dagger}$ ของน้ำหนามแดง 25 % ก่อนการพาสเจอร์ไรส์

การคำนวณค่า Chroma ดังนี้

$$C^* = [(a^*)^2 + (b^*)^2]^{1/2}$$

การคำนวณค่า Hue differenceตามสูตรที่ (5)

$$\Delta H' = [(\Delta E')^2 - (\Delta L')^2 - (\Delta C')^2]^{1/2}$$

ตารางภาคผนวกที่ 2 การคำนวณค่าของการเปลี่ยนสี ค่า Chroma และ ค่า Hue difference

ระยะเวลา (สัปดาน์)	ลูกหญูมิ และเวลา	Δι.	∇ι· (Δι·)²	Δa•	(Δa*)²	Δ _b .	(Δb⁺)²	$(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2$	$\Delta E^* = [(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2]^{1/2}$
0	65 ํ c 15นาที	-1.530	2.341	-1.514	2.292	0.220	0.048	4,681	1.577
	70 ํc 15นาที	-1.540	2.372	-0.327	0.107	-0.097	0.009	2.488	1.073
	75°c 15นาที	-2.633	6.933	0.346	0.120	1.027	1.055	8.107	0.517
	80 ํ c 1นาที	-3.693	13.638	0.253	0.064	-0.217	0.047	13.749	0.805
	85°c านาที	-4,103	16.835	0.283	0.080	0.140	0.020	16.934	2.212
	90 ๊c 1นาที	-3.817	14.569	0.64	0.410	0.867	0.752	15.731	2.178
\	65 c 15นาที	-0.647	0.419	-1.977	3.909	-0.480	0.230	4.558	1.577
	70 ํc 15นาที	0.343	0.118	-0.444	0.197	-1,050	1,103	1,417	1.086
	75 ํ c 15นาที	-0.003	90.76 £	0,16	0.026	-1,430	2.045	2,071	0.54
	80 ํ c านาที	-0.003	- 9°.	0.086	0.007	-1.070	1.145	1.152	1.186
	85 ํ c านาที	0.183	0.033	-0.14	0.020	-1.293	1.672	1.725	3,151
	90 ํ c 1นาที	0.070	0.005	-0.124	0.015	-1.077	1.160	1.180	2.254

2.164	1,19	0.629	1.308	3.151	2.774	2.164	1,19	0.858	1.422	3.155	2.774	2.847	1.313	1.083	1.614	3,193	2.863
4.527	1.173	0.396	0,737	0.292	0.267	5.535	2.604	2.022	1,405	1.712	0.647	11,859	9.930	4.893	10.500	9.952	10.196
0.001	0.127	0.368	0.472	0.176	0.224	0.078	0.187	2.008	0.974	0.410	0.123	5.823	96.796	3.988	7.992	7.823	8.779
0.033	0.357	0,607	0.687	0.420	0.473	0,280	0.433	1.417	0.987	0.640	0,350	-2,413	-2.607	-1,997	-2.827	-2.797	-2.963
4,494	0.740	0.023	0.025	0.056	0.029	5.081	2.056	0.002	0.168	0.974	0.445	5.636	2.250	0,599	1.971	1.277	1.254
-2.12	-0.86	0.153	-0.157	-0.237	-0.17	-2.254	-1.434	-0.044	-0.41	-0.987	-0.667	-2.374	5.1.	-0.774	-1.404	-1.13	-1.12
0.031	0.306	0.004	0.240	0.059	0.014	0,376	0.360	0.012	0.263	0.328	080'0	0.401	0.884	0,306	0.537	0.852	0,162
0.177	0.553	0.063	0.490	0.243	0.120	0.613	0.600	16.	0.513	0.573	0.283	0.633	0.94	0.553	0.733	0.923	0,403
65 c 15นาที	70 ํc 15นาที	75 c 15นาที	80 ํ c 1นาที	85 ํ ๓ านาที	90 ํ c 1นาที	65 ํ เ 15นาที	70 ํc 15นาที	75 ํ c 15นาที	80 ๋c 1นาที	85 ํ c 1นาที	90 ํ c 1นาที	65 ํ c 15นาที	70 ํ c 15นาที	75 c 15นาที	80 ํ c 1นาที	85 ํ เนาที	90 ํ c านาที
2						က						4					

											1						
3.708	1,439	1,083	1.614	3.24	2.863	3.966	2.135	2.128	2.353	3.444	2.968	4.115	2.135	2.128	2.353	3.444	3.163
7.697	8,196	8.812	10,006	5.081	4.745	10.038	21.865	20.514	23.516	40.668	27.755	49.805	65.126	53.644	65.449	78.652	92.253
0.058	0.014	0.656	1.631	0.916	2.094	0.008	0.020	0.994	1.353	1,716	1,952	0.013	0.071	0.047	0.792	1.020	1.000
0.240	0.120	0.810	1.277	0.957	1.447	0.087	0.143	0.997	1.163	1,310	1.397	0.113	0.267	0.217	0.890	1.010	1.000
6.436	5.382	7.060	7,150	2,560	2.362	6.693	13.988	17.339	20.675	37.295	25.341	41.913	53,495	42.172	62.000	75.934	89.946
-2.537	-2.32	-2.657	-2.674	-1.6	-1.537	-2.587	-3.74	-4.164	-4.547	-6.107	-5.034	-6.474	-7.314	-6.494	-7.874	-8.714	-9,484
1,203	2.799	1.096	1.225	1.605	5 111	3.338	7,857	2,182	1,488	1.656	0.462	7.879	11.560	11.424	2.657	1.698	1,306
1.097	1.673	1.047	1.107	1.267	0.537	1.827	2.803	14.6	1.220	1.287	0.680	2.807	3.400	3.380	1,630	1,303	1.143
65 ํ c 15นาที	70 c 15นาที	75 c 15นาที	80 ํc 1นาที	85°c 1นาที	90 ํ c 1นาที	65 c 15นาที	70 ํ c 15นาที	75 c 15นาที	80 ํ c 1นาที	85 ํ เนาที	90 ํc านาที	65 c 15นาที	70 ํ c 15นาฑี	75°c 15นาที	80 ํc 1นาที	85 ํ c 1นาที	90 ํc านาฑี
ro.						9						7					

ตารางภาคผนวกที่ 3 การคำนวณค่า Chroma

ระยะเวลา (สัปดาห์)	อุณหภูมิ และเวลา	*0	(a*) ²	*0	(b*) ²	$(a^*)^2 + (b^*)^2$	ť	$= [(a^*)^2 + (b^*)^2]^{1/2}$
0	65 c 15นาที	11.373	129.345	3.45	11.903	141,248		1.962
	70 ํc 15นาที	12.56WIL	157.754	3,133	9,816	167,569		0,116
	75 c 15นาที	13.233	175.112	4.257	18.122	193.234		0.379
	80 ๋ c 1นาที	13.140	172.660	3,013	9.078	181.738		0.038
	85 ๋ c 1นาที	13.170	173,449	3,370	11.357	184.806		0.095
	90 ํ ๓ านาที	13.527	182.980	4.097	16,785	199.765		0.719
-	65 c 15นาที	10.910	119.028	2.750	7.563	126.591		4.139
	70°c 15นาที	12.443	154.828	2,180	4.752	159.581		0.427
	75°c 15นาที	13.047/JW	170.224	1,800	3.240	173.464		0.013
	80 ํ c 1นาที	12.973	168.299	2.160	4.666	172.964		0.018
	85 ํ c านาที	12.747	162.486	1.937	3.752	166.238		0.154
	90 ํ c 1นาที	12.763	162.894	2.153	4.635	167.530		0.117

4.141	0.540	0.094	0.001	0.014	0.002	4.361	1.590	0.139	0.013	0.596	0.305	7,513	3.540	1.232	3.224	2.312	2.297
126.575	157,515	184.764	177,396	173,345	175.434	125.381	144.589	186.537	173.459	156.587	162.145	111.191	130.052	148.245	132.022	138.415	138.534
10.647	12.867	14.723	15.343	13.323	13.712	12.320	13.418	21.595	17.783	14.977	12.816	0.667	0.388	1.520	0.162	0.187	0.071
3.263	3.587	3.837	3.917	3.650	3.703	3.510	3.663	4.647	4.217	3.870	3.580	0.817	0.623	1,233	0.403	0.433	0.267
115,928	144.649	170.042	162.053	160.023	161,722	113.061	131.171	164.943	155.676	141.610	149,328	110.523	129.664	146,725	131,859	138.227	138.462
10.767	12.027	13.04	12.73	12.650	12.717	10.633	11.453	12.843	12.477	11.900	12.220	10.513	11.387	12.113	11.483	11.757	11.767
65 ํ c 15นาที	70 ็c 15นาที	75 ํc 15นาที	80 ํc 1นาที	85 ํc านาฑี	90 c านาที	65 c 15นาที	70°c 15นาที	75 °c 15นาที	80 ํ c 1นาที	85 ํ เนาที	90 ๋c 1นาที	65 ํ c าธนาที	70 ํ c 15นาที	75°c 15นาที	80 ํ ๓ านาที	85°c 1นาที	90 ํ c 1นาที
2						3						4					

က	65 ํ c 15นาที	10.350	107.123	3.470	12.041	119.163	5,614
	70 ํ c 15นาที	10.567	111.661	3,350	11.223	122.884	4.841
	75 c 15นาที	10.230	104.653	4.040	16.322	120.975	5.229
	80 ํ เนาที	10.213	104.305	4.507	20.313	124,618	4.504
	85 ํc านาที	11.287	127.396	4.187	17,531	144,927	1.555
	90° c 1นาที	11,350	128.823	4.677	21.874	150.697	1.020
9	65 ํ c 15นาที	10.300	106.090	3.317	11.002	117.092	6.075
	70 ํc 15นาที	9 147	83.668	3.373	11.377	95,045	12.507
	75 c 15นาที	8,723	76.091	4.227	17.868	93.958	12.905
	80 ํ c านาที	8,340	69,556	4.393	19.298	88,854	14.895
	85 ํ เานาที	6,780	45.968	4.540	20,612	66.580	26.275
	90° c านาที	7.853	61.670	4.627	21.409	83.079	17.396
7	65 c 15นาที	6.413	41.127	3.343	11,176	52.302	36.646
	70 ํc 15นาที	5,573	31,058	3.497	12.229	43.287	44.975
	75 c 15นาที	6,393	40,870	3.447	11.882	52.752	36.271
	80 ํ c 1นาที	5,013	25,130	4.120	16.974	42.105	46.197
	85°c 1นาที	4.173	17,414	4.240	17.978	35.392	53.825
	90 ํc 1นาที	3,403	11,580	4.230	17.893	29.473	61.728

ตารางภาคผนวกที่ 4 การคำนวณค่า Hue difference

ระยะเวลา (สัปดาน์)	เละเวลา เละเวลา	ΔE•	(∆E•)²	ΔL	(⊅۲,)²	Δς.	(ΔC*)²	$(\Delta E^*)^2 - (\Delta L^*)^2 - (\Delta C^*)^2$	$\Delta H^{*} = [(\Delta E^{*})^{2} - (\Delta L^{*})^{2} - (\Delta C^{*})^{2}]^{1/2}$
0	65 ํ c 15นาที	1.577	2.487	-1.530	2.341	-1,401	1.962	0.378	0.015
	70 ํ c 15นาที	1.073	1.151	-1.540	2.372	-0.341	0.116	0.526	0.016
	75 c 15นาที	0.517	0.517 0.267	-2.633	6.933	0.615	0.379	0.796	0.467
	80 ํc 1นาที	0.805	0.648	-3.693	13.638	0.195	0.038	0.073	0.513
	85็с 1นาที	2.212	4.893	-4.103	16.835	0.309	0.095	0.004	1.832
	90 ํc านาที	22:178	4.744	-3.817	14.569	0.848	0.719	0.442	0.745
-	65°c 15นาที	4.577	2.487	-0.647	0.419	-2.034	4.139	0.357	0.015
	70 ํc 15นาที	1.086	1.179	0.343	0.118	-0.653	0.427	0.873	0.016
	75°c 15นาที	0.54	0.54 0.292	-0.003	- 9. ·06	-0.115	0.013	2.057	0.501
	80 ํ c 1นาฑี	1.186	407	-0.003	90· ·6	-0.134	0.018	1.134	0.808
	85 ํ เ 1นาที	3.151	9.929	0.183	0.033	-0.392	0.154	1.538	1.986
	90 ํ c 1นาที	2.254	5.081	0.070	0.005	-0.342	0.117	1.058	0.745

0.938	1.986	0.808	0.545	0.934	0.066	0.27	0.934	0.572	0.887	2.347	0.938	1,386	2.347	0.893	0.572	1.029	0.615
0.354	0.327	0.297	0.496	0.218	0.251	0.798	0.653	1.871	1,129	0.788	0.263	3.946	5.506	3.355	6.739	6.788	7.737
4.141	0.540	0.094	0.001	0.014	0.002	4,361	1.590	0.139	0.013	965'0	0.305	7.513	3.540	1.232	3.224	2.312	2.297
-2.035	-0.735	0.307	0.033	-0.120	-0.040	-2.088	-1.261	0.372	-0.115	-0.772	-0.552	-2.741	-1.882	-1.110	-1.796	-1.521	-1.516
0.031	0.306	0.004	0.240	0.059	0.014	0.376	0.360	0.012	0.263	0.328	0,080	0.401	0.884	0.306	0.537	0.852	0.162
0.177	0.553	0.063	0.490	9.929 0.243	0,120	0.613	0.600	0.110	0.513	0.573	0.283	0.633	0,94	0.553	0.733	0.923	0.403
4.683	1.416	0.396	1.711	9.929	2.774 7.695	4.683	1,416	0.736	2.022	9.954	7,695	8,105	1.724	1.173	2,605	10.195	8.197
2,164	1,19	0.629	1.308	3.151	2.774	2,164	0	0.858	1,422	3,155	2.774	2.847	1.313	1.083	1.614	3.193	2.863
65 c 15นาที	70 ํc 15นาที	75°c 15นาที	80 ํ c 1นาที	85°c 1นาที	90 ํc 1นาที	65 c 15นาที	70°c 15นาที	75°c 15นาที	80 ํ c 1นาที	85°c 1นาที	90 ํc 1นาที	65°c 15นาที	70°c 15นาที	75°c 15นาที	80 ํ c านาที	85°c 1นาที	90 ํc 1นาที
65°c	70°c	75° ເ	80ຶc	85°c	ວຸ06	65°c	70°c	75°c	80°c	85°c	90ໍດ	65°c	70°c	75°c	80°c	85°C	90ູເ
2						က						4					

	0.615	0.665	0.892	1 065	1.24	1,434	0.704	0.595	0.595	0.893	1.063	368	0.007.0	2,802	2.505.2	1 577	- F	2.068	
	0.880	0.555	2.486	4.277	1.921	3,437	0.625	1.501	5.427	7,133	12.736	9.897	5.279	8.591	5,948	16.595	23.129	29.219	
0.4.4	5.014	4.841	5.229	4.504	1.555	1.020	6.075	12.507	12.905	14,895	26.275	17.396	36.646	44.975	36.271	46.197	53.825	61.728	
036.0	600.2-	-2.200	-2.287	-2.122	-1.247	-1,010	-2.465	-3,537	-3.592	-3.859	-5.126	-4.171	-6.054	-6.706	-6.023	-6.797	-7.337	-7.857	
1 203	504.1	2,799	1.096	1.225	1.605	0.288	3.338	7.857	2.182	1.488	1.656	0.462	7.879	11.560	11,424	2.657	1.698	1.306	
1 097		1.673	1.047	1.107	1.267	0.537	1.827	2.803	1.477	1.220	1.287	0.680	2.807	3.400	3.380	1.630	1.303	1.143	
13,749	2	2.071	1.173	2.605	10.498	8.197	15.729	4.558	4.528	5.537	11.861	8.809	16.933	4.558	4.528	5.537	11.861	10.005	
3.708		1.439	1,083	1.614	3.24	2.863	3.966	2.135	2.128	2,353	3,444	2.968	4.115	2.135	2.128	2.353	3.444	3,163	
65 ํ c 15นาที	10° C	พานา 0 กา	75 c 15นาที	80 ํc 1นาที	85 ํc านาที	90 ํ c 1นาฑี	65 ํ c 15นาที	70 c 15นาที	75 c 15นาที	80 ๊c านาที	85 ํc 1นาที	90 ํ c 1นาที	65 ํ c 15นาที	70 ํ c 15นาที	75 ํ c 15นาที	80 ํ c 1นาที	85 ํ ๓ านาที	90 ํ c 1นาที	
5							9						7						

การวิเคราะห์ความเข้มสีทั้งหมด

คำนวณความเข้มสีทั้งหมด

Total Color Density (O.D.units) = [($O.D._{420} + O.D._{520}$) - 2 ($O.D._{700}$)]

การวิเคราะห์ปริมาณสีพอลิเมอริก

คำนวณปริมาณสีพอลิเมอริก

ตารางภาคผนวกที่ 5 การวิเคราะห์ความเข้มสีทั้งหมด

೧೯೮೩ ಚಿತ್ರ	อุณหภูมิ		1	1			
(สัปดาห์)	เดยเวลา	O.D.	O.D. ₅₂₀	O.D. ₇₀₀		2 (O.D. ₇₀₀) O.D. ₄₂₀ + O.D. ₅₂₀	TCD (O.D.units) = [(O.D. ₄₂₀ + O.D. ₅₂₀) – 2 (O.D. ₇₀₀)]
0	65°c 15นาที	0.574	0.645	0.19	0.38	1.219	0.839
	70°c 15นาที	0.767	0.646	0.198	0.396	1.413	1.151
	75 c 15นาที	0.537	0.582	0.198	968.0	1,119	1.091
	80 ํ c 1นาที	0.558	9.0	0.205	0.41	1.158	1.063
	85 ํ c 1นาที	0.544	0.632	0.187	0.374	1.176	1.021
	90 ํc านาที	0.558	0.672	0.203	0.406	1.23	1.183
-	65 ํ c 15นาที	0.535	0.643	0.191	0.382	1.178	1.611
	70 c 15นาที	0,563	0.646	0.196	0.392	1.209	1.045
	75°c 15นาที	0.572	0.581	0.199	0.398	1.153	1.059
	80 ํ c 1นาที	0.588	0.599	0.204	0.408	1.187	1.03
	85 ํ เนาที	0.583	0.632	0.188	0.376	1.215	1.014
	90 ํ c านาที	0.572	0.672	0.203	0.406	1.244	1.028

1.019	1.017	0.938	0.855	0.922	0.872	1.014	0.894	0.893	0.841	0.864	0.858	0.895	0.817	0.755	0.779	0.839	0.838
1.423	1.619	1.537	1.519	1,515	1,611	1,264	1.342	1.345	1.303	1.356	1.294	1,365	1.207	1.522	1.307	1.348	1.326
				4;	1.6	To the second				1:0	Ć.	6,1	1.2	4.		1.9	1.3
0.404	0.468	0.446	0.456	0.494	0.428	0.434	0.448	0.452	0.448	0.434	0.436	0.47	0.45	0.584	0.466	0.484	0.454
0.202	0.234	0.223	0.228	0.247	0.214	0.217	0.224	0.226	0.224	0.217	0.218	0,235	0.225	0.292	0.233	0.242	0.227
0.8	0.903	0.858	0.858	0.853	0.903	0.675	0.722	0.731	0.695	0.744	0.673	0.753	0.67	0.86	0.74	0.762	0.753
0.623	0.716	0.679	0.661	0.662	0.708	0.589	0.62	0.614	0.608	0.612	0.621	0.612	0.537	0.662	0.567	0.586	0.573
65 c 15นาที	70 ํ c 15นาที	75 c 15นาที	80 ํ c 1นาที	85 ํ เนาพี	90 ํc านาที	65 c 15นาที	70 ํ c 15นาที	75 c 15นาที	80 ํ c 1นาที	85 ํ เ 1นาที	90 ํc 1นาที	65 ํ c 15นาที	70 °c 15นาที	75 °c 15นาที	80 ํc 1นาที	85 ํ๓ านาที	90 ํ c 1นาที
2						3						4					

0.830	0.757	0.723	0.748	0.802	0.824	0.796	0.601	0.659	0.678	0.662	0.701	0.651	0.599	0.655	0.601	0.619	0
1.42	1.465	1.477	1.42	1,424	1,438	2.005	0.985	1.079	1.007	1.017	1.023	0.997	0.925	. 1.019	1.006	1.004	† !
0.406	0.42	0.418	0.39	0.41	0.41	0.394	0.386	0.42	0.406	0.398	0.392	0.346	0.324	0.364	0.328	0.342	
0.203	0.21	0.209	0.195	0.205	0.205	0.197	0.193	0.21	0.203	0.199	0.196	0,173	0.162	0.182	0.164	0.171	
0.783	0.802	0.82	0.789	0.789	0.796	0.523	0.514	0.561	0.536	0,543	0.518	0.533	0.503	0.565	0.563	0.555	i t
0.637	0.663	0.657	0.631	0.635	0.642	1.482	0.471	0.518	0,471	0.474	0.505	0.464	0.422	0.454	0,443	0.449	((
65 ํ c 15นาที	70°c 15นาที	75 °c 15นาที	80 ัс 1นาที	85 ํ c านาฑี	90 ํ๓ านาฑี	65 c 15นาที	70 ํ c 15นาที	75 ํ c 15นาที	80 ํ c 1นาที	85 ํ เกมาที่	90 ํc 1นาที	65 ํ c 15นาที	70 ํc 15นาที	75 c 15นาที	80 ํ c 1นาที	85°c 1นาที	
5						9.						7					

ดารางภาคผนวกที่ 6 การวิเคราะห์บริมาณสีพอลิเมอริก

1800 N	อณหภมิ						
(สัปดาห์)	และเวลา	O.D. ₄₂₀	O.D. ₅₂₀		2 (O.D. ₇₀₀)	O.D. ₇₀₀ 2 (O.D. ₇₀₀) O.D. ₄₂₀ + O.D. ₅₂₀	PC (O.D.units) = [(O.D. ₄₂₀ + O.D. ₅₂₀) - 2 (O.D. ₇₀₀)]
0	65°c 15นาที	1.095	0.758	0.451	0.902	1.853	0.853
	70 ํc 15นาที	1,02	0.714	0.419	0.838	1.734	0.893
	75 ๋ c 15นาที	0.989	0.692	0.414	0.828	1.681	0.853
	80 ํ c 1นาที	0.976	0.698	0.42	0.84	1.674	0.834
	85 ํ เกมาที	0.947	0.672	0.399	0.798	1.619	0.056
•	90 ํc านาที	0.978	0.679	0.401	0.802	1.657	0.855
-	65 ํc 15นาที	1.149	0.782	0.472	0.944	1.931	0.895
	70 ํc 15นาที	1.099	0.744	0.441	0.882	1,843	0.896
	75°c 15นาที	738	0.772	0,461	0.922	1.902	0.853
	80°c 1นาที	1.098	0.752	0.453	906.0	1,85	0.834
	85°c 1นาที	1.133	0.768	0.466	0.932	1.901	0.821
	90 ํ เนาที	1.18	0.814	0.483	0.966	1.994	0.855

	0.943	0.896	0.88	0.873	0.821	0.873	0.951	0.911	0.912	0.929	0.895	0.901	0.951	0.993	0.945	0.948	0.931	0.944
	1.834	1.885	1.837	1.927	1.917	1.856	1.667	1.715	1.73	1.731	1.793	1.727	2.105	2.128	2.454	2.123	2.156	1.997
	0.864	0.892	0.892	0.944	0.942	0.912	0.814	0.822	0.85	0.802	0.862	0.826	1.052	1.044	1.268	1.094	1.124	0.992
	0.432	0,446	0.446	0.472	0,471	0.456	0.407	0.411	0.425	0.401	0,431	0.413	0.526	0.522	0.634	0.547	0.562	0,496
	0./48	0.761	0.742	0.785	0.777	0.756	0.685	0.703	0.712	0.695	0.732	0,697	0,878	0.88	1.047	0.898	906.0	0.83
4	1.086	1.124	1.095	1,142	1.14	ALLIA SOLVER	0.982	1.012	1.018	1.036	1.061	1.03	1.227	1.248	1.407	1.225	1.25	1.167
100 mm m	MI.MCI 20 CO	70 ํc 15นาที	75 c 15นาที	80 ํ c านาที	85 ํ c านาที	90 ํ c านาที	65 c 15นาที	70 ํ c 15นาที	75 c 15นาที	80 ๊c านาที	85 ๋ c 1นาที	90 ํc 1นาที	65 °c 15นาที	70 ํ c 15นาที	75°c 15นาที	80 ํ c 1นาที	85 ํ c านาที	90 ํc 1นาที
	7						က						4					

20.0	1014		505.0	0.963	0.949	0.981	1.019	1.005	0.983	0,975	1,005	1.053	1.084	1,186	1.029	1.032	1,006
1.905	1.969	1.934	1,872	1.925	1.952	1.891	1.964	1.955	1.91	1,892	1.923	1.721	1,719	1,746	1,669	1.703	1.699
0.924	0.95	0.942	0.924	0.962	0.946	0.948	0.95	96.0	0.932	1.948	0.974	0.826	0.808	0.834	0.796	0.808	0.826
0.462	0.475	0.471	0.462	0.481	0.473	0.474	0.475	0,475	0.466	0.974	0.487	0.413	0.404	0.417	0.398	0.404	0.413
0.781	0.817	0.809	0.773	0.78	0.801	0.777	0.804	0.798	0.778	0.781	0.785	0.702	0.713	0.717	0.694	0.695	0.697
1.124	1.152	1.125	1.099	1.145	1,151	1.12	1.16	1.157	1.132		1.138	1.019	1.006	1.029	0.975	1.008	1.002
65 c 15นาที	70 ํ c 15นาที	75°c 15นาที	80 ํ c านาที	85 ํ c 1นาที	90°c 1นาที	65 c 15นาที	70 ํ c 15นาที	75 c 15นาที	80 ๋ c 1นาที	85 ํ เ านาที	90 ํ c านาที	65 ํc 15นาที	70 ํc 15นาที	75 c 15นาที	80 ํ๓ านาที	85 ํ เนาที	90 ํc 1นาที
5						9						7					